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1 Drude model 
 

1.1 Electron Transport 
Idea: metal = positive ions + sea of free electrons 
Assumptions: 
 1.  Electrons have a scattering time 𝜏, the probability of 

  scattering within 𝑑𝑡 ist 𝑑𝑡/𝜏. 

 2. After a scattering event, the electron returns to 𝑝 = 0. 

 3. In between scatterings, electrons respond to external �⃗⃗�- 

  and �⃗⃗�-fiels. 

⟹     𝑝(𝑡 + 𝑑𝑡) =
𝑑𝑡

𝜏
0⃗⃗ + (1 −

𝑑𝑡

𝜏
) (𝑝(𝑡) + �⃗�𝑑𝑡)

= 𝑝(𝑡) + �⃗�𝑑𝑡 −
𝑑𝑡

𝜏
𝑝(𝑡) + 𝒪(𝑑𝑡2) 

Here, 𝑑𝑡/𝜏 is scattering probability, 1 − 𝑑𝑡/𝜏 is not-scattering 
probability and 𝐹 is the Lorentz-force of the external fields. 
Division by 𝑑𝑡 yields: 

⟺    
𝑑𝑝

𝑑𝑡
≈ �⃗� −

𝑝

𝜏
                      

CASE A: �⃗⃗� ≠ 0, �⃗⃗� = 0 

 ⟺    
𝑑�⃗�

𝑑𝑡
≈ −𝑒�⃗⃗� −

�⃗�

𝜏
    ⟺      𝑚

𝑑�⃗⃗�

𝑑𝑡
≈ −𝑒�⃗⃗� − 𝑚�⃗�/𝜏  

 Assuming a static state solution, one can assume 𝑑�⃗� 𝑑𝑡⁄ = 0 

 ⟹      𝑒𝜏�⃗⃗� = −𝑚�⃗�     ⟺    
𝑛𝑒2𝜏

𝑚
�⃗⃗� = −𝑛𝑒�⃗� 

 ⟹      𝜎 = 𝑛𝑒2𝜏/𝑚  

CASE B: �⃗⃗� ≠ 0, �⃗⃗� ≠ 0 

 ⟺     𝑚
𝑑�⃗⃗�

𝑑𝑡
≈ −𝑒(�⃗⃗� + �⃗� × �⃗⃗�) − 𝑚�⃗�/𝜏 

 Again assuming 𝑑�⃗� 𝑑𝑡⁄ = 0 

 ⟺      𝑒�⃗⃗� = −𝑒�⃗� × �⃗⃗� − 𝑚�⃗�/𝜏 

 ⟺     �⃗⃗� =
1

𝑛𝑒
𝑗 × �⃗⃗� +

1

𝜎
𝑗 

 Here, 𝑗 × �⃗⃗�/𝑛𝑒 is the electrical field caused by the Hall-effect! 

 Assume 𝑗 = 𝑗𝑒𝑥 and �⃗⃗� = 𝐵𝑒𝑧, it follows 

 𝐸𝑦 = −
1

𝑛𝑒
𝑗𝐵 

 Since 𝐸𝑦  can be measured via voltage and 𝑗 as well as �⃗⃗� are 

 set by experiment, one can determine 𝑛 this way! 
,  
 

1.2 Wiedemann-Franz-Law 

Like 𝑗 = 𝜎∇𝜑 (�⃗⃗� = ∇𝜑), it is also true that 𝑗𝑇 = 𝜅∇𝑇, 𝑗𝑇 being the 
thermal current and 𝜅 the thermal conductivity. 

Starting with Boltzmann’s kinetic theory, it is 𝜅 =
1

3
𝑛𝑐𝑣〈𝑣〉𝜆 (𝑐𝑣 

is heat capacity per particle and 𝜆 = 〈𝑣〉𝜏 the scattering length). 
According to kinetic theory, it is: 

𝑐𝑣 =
3

2
𝑘𝐵 ,     〈𝑣〉 = √

8𝑘𝐵𝑇

𝜋𝑚
    ⟹      𝜅 =

4

𝜋

𝑘𝐵
2𝑛𝜏𝑇

𝑚
 

Using 𝜎 = 𝑛𝑒2𝜏/𝑚, one can erase the unknown parameter 𝜏 and 
define the Lorentz number 𝐿: 

𝐿 =
𝜅

𝜎𝑇
=

4𝑘𝐵
2

𝜋𝑒2
= const. (Wiedemann-Franz Law) 

Problem: 𝑐𝑣 was made for gases, but is experimentally wrong for 
metals. Same is true for 〈𝑣〉. 
,  

 

1.3 Sommerfeld’s Theory 
Electrons in metals behave like a wave. To neglect surface 
effects, one uses periodic boundary conditions. In 1D, you take a 
one dimensional length 𝐿 and wrap it together to a circle, so that 
𝜓(𝑥) = 𝜓(𝑥 + 𝐿). 
Free electrons ⟹  𝜓(𝑥)~𝑒𝑖𝑘𝑥    ⟹     𝑘 = 𝑛 ⋅ 2𝜋/𝐿,     𝑛 ∈ ℤ 
Density of states: 𝐷 = 𝑛/𝑘 = 𝐿/2𝜋 (states per “length-unit” in 𝑘-
space) 
Filling up 𝑁 electrons according to the Pauli principle into the 

lowest states, the maximum 𝑘 is 𝑘𝐹 = 𝑁 4𝐷⁄ =
𝜋𝑁

2𝐿
 

(the 4 is because of the Pauli principle and because one goes 
from −𝑘 to 𝑘) 𝑘𝐹  is called “Fermi Wavenumber/-vector” 
 

Corresponding Energy: 𝐸𝐹 = ℏ𝑘𝐹 2𝑚⁄ = ℎ2𝑁2 32𝑚𝐿2⁄ = 𝑘𝐵𝑇𝐹  
(here, 𝑇𝐹  is called “Fermi-Temperature”, but it is not the actual 
temperature of the system!) 
In three dimension, take a cube 𝐿3 and you get 𝑘𝑖 = 𝑛𝑖 ⋅ 2𝜋/𝐿. 
Each 𝑘-value occupies (2𝜋 𝐿⁄ )3, the density is therefore 𝐷 =
(𝐿 2𝜋⁄ )3.  The 𝑘-space now is a sphere with radius 𝑘𝐹 . 

𝑁 = 2⏟
Spin

⋅ (
4𝜋

3
𝑘𝐹
3)

⏟    
occupied
Volume

⋅ 𝐷    ⟺     𝑘𝐹 =
1

𝐿
√2𝜋2𝑁
3

= √2𝜋2𝑛
3

,    𝑛 =
𝑁

𝐿3
 

(attention: 𝑛 is now the particle density!) 

Fermi Energy: 𝐸𝐹 =
ℏ2

2𝑚
(3𝜋2𝑛)2 3⁄  

According to Fermi-Dirac-Statistics 

𝑛𝐹(𝛽(𝐸 − 𝜇)) = 1/(1 + 𝑒
𝛽(𝐸−𝜇)),      𝛽 = 1/𝑘𝑇 

is the probability of a state with energy 𝐸 to be occupied. For 
𝑇 ≈ 0, the chemical potential is 𝜇 ≈ 𝐸𝐹 . 
 

1.4 Density of States in Energy 
The total energy of the system is given by 

𝐸tot = 2
𝑉

(2𝜋)3
∫𝑑𝑘3 𝐸(𝑘)𝑛𝐹(𝛽(𝐸(𝑘) − 𝐸𝐹))

= 2
𝑉

(2𝜋)3
4𝜋∫ 𝑘2 𝑑𝑘 𝐸(𝑘)𝑛𝐹(𝛽(𝐸(𝑘) − 𝐸𝐹))

∞

0

 

Here, the factor 2 again accounts for the spins. The substitution  

𝑘 = √2𝑚𝐸 ℏ2⁄ , 𝑑𝑘/𝑑𝐸 = √𝑚 2ℏ2𝐸⁄  yields: 

𝐸tot = 𝑉∫ 𝑑𝐸 
√2𝐸𝑚3 2⁄

𝜋2ℏ3
𝐸𝑛𝐹(𝛽(𝐸 − 𝐸𝐹))

∞

0

= ∫ 𝑑𝐸 𝐸 𝑔(𝐸)𝑛𝐹(𝛽(𝐸 − 𝐸𝐹))
∞

0

 

Thereby 𝑔(𝐸) is defined as 

𝑔(𝐸) =
√2𝑚3𝑉

𝜋2ℏ3
√𝐸 =

3𝑁

2𝐸𝐹
2/3
√𝐸 

In 1D and 2D, 𝑔 is 

𝑔1𝐷 =
𝐿√2𝑚

𝜋ℏ

1

√𝐸
,     𝑔2𝐷 =

𝑚𝐿2

𝜋ℏ2
 

The average energy per particle is then (in 3D at 𝑇 = 0 K): 

〈𝐸〉 =
1

𝑁
∫ 𝑑𝐸 𝐸 𝑔(𝐸)
𝐸𝐹

0

=
3

5
𝐸𝐹  

 

1.5 Fermi-Dirac-Distribution 
For 𝑇 = 0 K, the probability for a stat with energy 𝐸 goes like 
𝑝(𝐸) = 𝜃(𝐸𝐹 − 𝐸). For 𝑇 > 0 K, states with higher energies 
might be occupied, as described by the Fermi-Dirac-Distribution: 

𝐹𝐹𝐷(𝐸) =
1

𝑒(𝐸−𝜇) 𝑘𝑇⁄ + 1
 

Here, 𝜇 is the chemical potential with 𝜇(𝑇 = 0) = 𝐸𝐹 . Note, that 
𝐹𝐹𝐷(𝜇) = 1/2. The chemical potential is  

𝜇(𝑇) ≈ 𝐸𝐹 (1 −
𝜋2

12
(
𝑘𝑇

𝐸𝐹
)
2

) 

Furthermore, note that for 𝐸 − 𝜇 ≫ 𝑘𝑇 𝐹𝐹𝐷 becomes the 

Maxwell-Boltzmann statistics 𝑒−(𝐸−𝜇) 𝑘𝑇⁄ . 

 
The energy of the system is 

Δ𝐸 = 𝐸(𝑇) − 𝐸(0) = ∫ 𝑑𝐸 𝐸𝑔(𝐸)𝐹𝐹𝐷(𝐸)
∞

0

−∫ 𝑑𝐸 𝐸𝑔(𝐸)
𝐸𝐹

0

 

One finds, that the heat capacity is 

𝑐 =
𝑑𝐸

𝑑𝑇
=
𝜋2

3
𝑔(𝐸𝐹)𝑘

2𝑇 

Lorentz Force: 

�⃗� = −𝑒(�⃗⃗� + �⃗� × �⃗⃗�) 

 

−𝑛𝑒�⃗� = 𝑗 = 𝜎�⃗⃗� 
𝑛: particle densitiy 
𝜎: conductivity 

�⃗� = −𝑗/𝑛𝑒 



2 Chemical Bonds 
 

2.1 Ionic Bonds 
Ionisation Energy IE: 
 Energy required to remove an electron from an atom  to 
 create a positive ion 
Electron Affinity EA: 
 Energy gained from adding an electron to a neutral atom to 
 create a negative ion 
Cohesive Energy CE: 
 Energy gained from fusing two ions together (Coulomb). 
Total energy change: 

Δ𝐸𝐴+𝐵→𝐴++𝐵− = IE𝐴 − EA𝐵,     Δ𝐸𝐴++𝐵−→𝐴𝐵 = −CE 
⟹    Δ𝐸𝐴+𝐵→𝐴𝐵 = Δ𝐸𝐴+𝐵→𝐴++𝐵− + Δ𝐸𝐴++𝐵−→𝐴𝐵 = IE𝐴 − EA𝐵 − CE 
If Δ𝐸𝐴+𝐵→𝐴𝐵 < 0, the bond might be formed. 

Mulliken electronegativity = (EA + IE)/2 
 

2.2 Covalent Bonds 
The wider the potential box, the lower is the ground state 
energy. Therefore, to hydrogen atoms together form a bigger 
box with lower electron states: they bond. 
Since two helium atoms have four bonding electrons, due to the 
Pauli principle not only the common ground state (which would 
be lower) has to be occupied, but also the first excited state, 
which has a higher energy than the original ground state of the 
isolated atoms: they don’t bond. 



3 Crystal Structure, Reciprocal 

Lattice 
 

3.1 Describing a Lattice 
A lattice is an infinite array of discrete points described by the 
lattice vector 

�⃗⃗� = ∑𝑢𝑖�⃗�𝑖

3

𝑖=1

,     𝑢𝑖 ∈ ℕ0 

where �⃗�𝑖  are linear independent. A primitive unit cell is defined 
by the volume �⃗�1(�⃗�2 × �⃗�3). Each unit cell contains one lattice 
point. A primitive unit cell can be constructed by the Wigner-
Seitz-Method. 
 

3.2 Lattice Types in 2D 
𝜑 is the angle between �⃗�1 and �⃗�2. 
Oblique lattice:    |�⃗�1|, |�⃗�2| arbitrary, 𝜑 ≠ 90° 
Rectangular lattice:  |�⃗�1| ≠ |�⃗�2| arbitrary, 𝜑 = 90° 
Centered rectangular lattice: |�⃗�1| ≠ |�⃗�2| arbitrary, 𝜑 ≠ 90°  
Hexagonal lattice:  |�⃗�1| = |�⃗�2| arbitrary, 𝜑 = 120° 
Square lattice:   |�⃗�1| = |�⃗�2| arbitrary, 𝜑 = 90° 
 

3.3 Lattice Types in 3D 
Simple Cubic Lattice (SC): 

�⃗�1 = 𝑎𝑒𝑥,     �⃗�2 = 𝑎𝑒𝑦 ,     �⃗�3 = 𝑎𝑒𝑧 

Body-Centred Cubic Lattice (BCC): 

�⃗�1 = 𝑎𝑒𝑥,     �⃗�2 = 𝑎𝑒𝑦,     �⃗�3 =
𝑎

2
(𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧) 

Face-Centred Cubic Lattice (FCC): 

�⃗�1 =
𝑎

2
(𝑒𝑥 + 𝑒𝑦),     �⃗�1 =

𝑎

2
(𝑒𝑦 + 𝑒𝑧),     �⃗�3 =

𝑎

2
(𝑒𝑥 + 𝑒𝑧) 

 

3.4 Notation of Directions 

The direction of �⃗⃗� can be noted down using square brackets 
[𝑎𝑏𝑐] like: 

�⃗⃗� = 3�⃗�1 − 2�⃗�2 + �⃗�3     →      [32̅1] minus → bar 

�⃗⃗� = −6�⃗�1 + 12�⃗�2 − 3�⃗�3     →      [2̅41̅] common divisors ign. 
 

3.5 Lattice Planes and Miller Indices 
Notation of lattice plane: 
If 𝑥, 𝑦, 𝑧 are the intercepts of the plane with the �⃗�1-, �⃗�2-, �⃗�3-axes, 
then find the smallest integers ℎ, 𝑘, 𝑙 such that 

1

𝑥
:
1

𝑦
:
1

𝑧
= ℎ: 𝑘: 𝑙 

Then, (ℎ𝑘𝑙) are the Miller indices of the plane. Again, use a bar 
for negative indices. 
The vector 

�⃗� ≔ ℎ(�⃗�2 × �⃗�3) + 𝑘(�⃗�3 × �⃗�1) + 𝑙(�⃗�1 × �⃗�2) 
is normal to the plane. 
 

3.6 Basis 
Crystal can be described by a lattice plus a basis, which itself is 
described by basis vectors 

𝑟𝑖 = 𝑥𝑖�⃗�1 + 𝑦𝑖�⃗�2 + 𝑧𝑖�⃗�3,     𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ [0,1) 

 

 

 

 

 

 

 

 

 

3.7 Reciprocal Lattice 
Construction: The primitive lattice vectors of the reciprocal 

lattice �⃗⃗�𝑖  can be derived using the primitive lattice vectors of the 
direct lattice �⃗�𝑖: 

�⃗⃗�1 =
2𝜋

Ω
(�⃗�2 × �⃗�3),     �⃗⃗�2 =

2𝜋

Ω
(�⃗�3 × �⃗�1),     �⃗⃗�3 =

2𝜋

Ω
(�⃗�1 × �⃗�2) 

�⃗� =∑𝑛𝑖 �⃗⃗�𝑖

3

𝑖=1

 

Here, Omega is the volume of the primitive lattice cell: 
Ω ≔ �⃗�1(�⃗�2 × �⃗�3) 

Properties: 

1 �⃗�𝑖 �⃗⃗�𝑗 = 2𝜋𝛿𝑖𝑗 

2 |�⃗�1(�⃗�2 × �⃗�3)| = (2𝜋)
3/|�⃗⃗�1(�⃗⃗�2 × �⃗⃗�3)| 

3 The reciprocal lattice of the reciprocal lattice is the direct  
 lattice. 

4 𝑒𝑖�⃗��⃗⃗� = 1 

5 �⃗�(ℎ𝑘𝑙) = ℎ�⃗⃗�1 + 𝑘�⃗⃗�2 + 𝑙�⃗⃗�3 is normal to the lattice plain (ℎ𝑘𝑙). 
6 The separation between two lattice plains is 

 𝑑(ℎ𝑘𝑙) = 2𝜋/|�⃗�(ℎ𝑘𝑙)|. 
 

3.8 The Brillouin Zones 
The first Brillouin Zone is the Wigner-Seitz-Cell, centered at the 
origin of the reciprocal space and contains all the points which 
are closer to the origin than to any reciprocal lattice point. 
The construction can be done using so-called Bragg-Planes. 
 

3.9 Fourier-Analysis of a Periodic Function 
Since the lattice is periodic, so are quantities such as electron 
concentration, potential energy usw. Consider a general function 
with periodicity 

𝑓(𝑟) = 𝑓(𝑟 + �⃗⃗�), 

�⃗⃗� being the lattice vector. Apply Fourier-Transformation: 

𝑓(𝑟 + �⃗⃗�) = ∑𝑓(�⃗⃗�)𝑒𝑖�⃗⃗�(𝑟+�⃗⃗�)

𝑘

=∑𝑓(�⃗⃗�)𝑒𝑖�⃗⃗�𝑟

𝑘

𝑒𝑖�⃗⃗��⃗⃗� =
!
𝑓(𝑟) 

⟹     𝑒𝑖�⃗⃗��⃗⃗� =
!
1    ⟺    �⃗⃗� = �⃗� 

For Fourier-Tranformation, only the �⃗⃗�-values are important 

which equal �⃗�: 

𝑓(𝑟) =∑𝑓(�⃗�)𝑒𝑖�⃗�𝑟

�⃗�

 



4 Elastic Scattering of Waves 
 

4.1 Scattering Particles 
Photons:  Scattered by atomic electrons, gives crystal 
    structure 
Neutrons: Scattered by all particles with spin (electrons, 
    nuclei), gives crystal structure as well as  
    magnetic structure 
Electrons: Charged, can’t penetrated deep into the solid, 
    useful for surfaces 
 

4.2 Scattering at one Particle 
Consider scattering at one particle. 
Incoming wave: 

𝐴 = 𝐴0𝑒
𝑖(�⃗⃗�𝑟−𝜔𝑡) 

Elastic scattering: 𝜔 = 𝜔′, 𝑘 = 𝑘′, �⃗⃗� ≠ �⃗⃗�′ 
Total wave: 

𝐴′ = 𝐴0𝑒
𝑖(�⃗⃗�𝑟−𝜔𝑡)𝑓

𝑒𝑖𝑘
′|�⃗⃗�−𝑟|

|�⃗⃗� − 𝑟|
 

𝑓: atomic factor (element, scattering angle …) 
last term: scattered, spherical wave 

Approximation: |�⃗⃗� − 𝑟| ≈ 𝑅 in the denominator. In the 

exponent, however, this is to rough: 

𝑘′|�⃗⃗� − 𝑟| = �⃗⃗�′(�⃗⃗� − 𝑟) = �⃗⃗�′�⃗⃗� − �⃗⃗�′𝑟 ≈ 𝑘𝑅 − �⃗⃗�′𝑟 

⟹     𝐴′ =
𝐴0
𝑅
𝑒𝑖(𝑘𝑅−𝜔𝑡)𝑓𝑒−𝑖𝑟Δ�⃗⃗�,     Δ�⃗⃗� ≔ �⃗⃗�′ − �⃗⃗�  (scattering vec. ) 

 

4.3 Scattering at many Particles 

Sum over all particles 𝑖 equals sum over all lattice points �⃗⃗� and 
basis atoms 𝑟𝑗: 

𝐴′ =
𝐴0
𝑅
𝑒𝑖(𝑘𝑅−𝜔𝑡)∑𝑓𝑖𝑒

−𝑖𝑟iΔ�⃗⃗�

𝑖

=
𝐴0
𝑅
𝑒𝑖(𝑘𝑅−𝜔𝑡)∑∑𝑓𝑗𝑒

−𝑖(�⃗⃗�+𝑟𝑗)𝛥�⃗⃗�

𝑗�⃗⃗�

=
𝐴0
𝑅
𝑒𝑖(𝑘𝑅−𝜔𝑡)∑𝑒−𝑖�⃗⃗�𝛥�⃗⃗�

�⃗⃗�⏟      
=𝑎(Δ�⃗⃗�)

∑𝑓𝑗𝑒
−𝑖𝑟𝑗𝛥�⃗⃗�

𝑗⏟        
=𝑆(Δ�⃗⃗�)

 

Intensity: 

𝐼 = |𝐴′|2 =
|𝐴0|

2

𝑅2
|𝑎(Δ�⃗⃗�)|

2
|𝑆(Δ�⃗⃗�)|

2
 

Consider 𝑎(Δ�⃗⃗�): 

For Δ�⃗⃗� ≠ �⃗� ⟹ 𝑎 = 0 (the phase factors cancel each other out) 

But for Δ�⃗⃗� = �⃗� ⟹ 𝑎 = ∑ 1�⃗⃗� , which is huge. 

Hence, one gets a very intense scattered wave for Δ�⃗⃗� = �⃗�, which 
is called Laue condition (Max von Laue). 
 

4.4 Connection to Bragg-Condition 
For X-ray scattering at crystals, there is also the Bragg-Condition 

2𝑑 sin 𝜃 = 𝑛𝜆 
It is equivalent to the Laue-Condition: 

Δ�⃗⃗� = �⃗⃗�′ − �⃗⃗� = �⃗�    ⟺     𝑘′2 = 𝑘2 + 𝐺2 + 2�⃗⃗��⃗�    ⟺   −2�⃗⃗��⃗� = 𝐺2 

In the last step was used, that �⃗⃗� and �⃗⃗�′ differ only in direction, 
not in length (elastic scattering). 
Left-hand-side: 

�⃗� = ℎ�⃗⃗�1 + 𝑘�⃗⃗�2 + 𝑙�⃗⃗�3 might not be 
the shortest possible vector. 
Therefore, it can be written as 

�⃗� = 𝑛�⃗�𝑠, 𝑛 ∈ ℕ with �⃗�𝑠 being the 
shortest possible vector with integers ℎ, 𝑘, 𝑙: 

−2�⃗⃗��⃗� = −2�⃗⃗�𝑛�⃗�𝑠 = 2𝑘𝑛𝐺𝑠 sin 𝜃 = 2 (
2𝜋

𝜆
) 𝑛 (

2𝜋

𝑑
) sin 𝜃 =

!
𝐺2

= (𝑛
2𝜋

𝑑
)
2

    ⟺      2𝑑 sin 𝜃 = 𝑛𝜆 
 

4.5 Ewald Sphere 

In reciprocal space, draw the vector �⃗⃗� (direction of incoming 
beam), such that it ends in a reciprocal lattice point. Since 𝑘′ =

𝑘, the possible �⃗� = �⃗⃗�′ − �⃗⃗�-vectors lay on a sphere with radius 𝑘. 

But �⃗� can by its definition only lay between to reciprocal lattice 

points. Therefore, only in the �⃗⃗�′-direction, where a lattice point 
lays on the sphere, constructive interference is possible. 
 

4.6 Brillouin-Zone and Laue Condition 
As in seen in 4.4, the Laue condition could be rewritten as 

−2�⃗⃗��⃗� = 𝐺2 
The minus sign doesn’t matter here, 

so shift �⃗� → −�⃗� and get 

2�⃗⃗��⃗� = 𝐺2 ⟺ �⃗⃗� (
1

2
�⃗�) = (

1

2
𝐺)

2

 

Since a dot product yields �⃗��⃗⃗� = 𝑎𝑏𝑎 , where 𝑏𝑎  is the projection 

length on �⃗�, the above equation is true, if �⃗⃗� lays on the Brillouin 
zone edge. 
 

4.7 Example I: Simple Cubic (SC) 

For simple cubic, it is �⃗�𝑖 = 𝑎𝑒𝑖  and �⃗⃗�𝑖 = 2𝜋 𝑎⁄ 𝑒𝑖 and therefore 

𝑑 =
2𝜋

𝐺(ℎ𝑘𝑙)
=

𝑎

√ℎ2 + 𝑘2 + 𝑙2
. 

The Bragg condition gives 
2𝑎

√ℎ2 + 𝑘2 + 𝑙2
sin 𝜃 = 𝑛𝜆 

Hence, for each tuple ℎ, 𝑘, 𝑙, 𝑛, there is one angle 𝜃 with a 
maximum (but e.g. (ℎ𝑘𝑙) = (110) and (101) give the same 𝜃). 
 

4.8 Example II: Face Centred Cubic (FCC) 
A FCC can be defined as a SC with a basis 𝑟𝑗 

(
0
0
0
),    

𝑎

2
(
1
1
0
),     

𝑎

2
(
1
0
1
),     

𝑎

2
(
0
1
1
) 

Remember 𝐴′ ~ 𝑎(Δ�⃗⃗�)𝑆(Δ�⃗⃗�), where maxima are only for Δ�⃗⃗� = �⃗� 

and therefore 𝐴′ ~ 𝑎(�⃗�)𝑆(�⃗�). What is 𝑆(�⃗�) (for 𝑓𝑗 = 𝑓)? 

𝑆(�⃗�) =∑𝑓𝑗𝑒
−𝑖𝑟𝑗�⃗�

𝑗

= 𝑓 (1 + 𝑒−𝑖
2𝜋
𝑎
𝑎
2
(ℎ+𝑘+0) + 𝑒⋯ + 𝑒⋯)

= 𝑓(1 + 𝑒−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙))

= {
4𝑓, ℎ𝑘𝑙 are all even or odd
0, otherwise

 

If ℎ𝑘𝑙 als all even or odd, the sums ℎ + 𝑘 etc. are all even and the 
exponent becomes a multiple of 2𝜋. If only one or two of ℎ𝑘𝑙 is 
even, two 𝑒-functions are −1 and one is 1 which gives 0 in total. 
Therefore, the solution is the same as for simple cubic, but 
even/odd-combinations of ℎ𝑘𝑙 are not allowed. 
 
BCC: Easily can be shown that for BCC ℎ + 𝑘 + 𝑙 must be even. 
 

4.9 Example III: Sodium-Chloride (NaCl) 
Use simple cubic lattice with eight atom basis: 

N𝑎+ : (
0
0
0
) ; 
𝑎

2
(
1
1
0
) ; 
𝑎

2
(
1
0
1
) ; 
𝑎

2
(
0
1
1
) ;     Cl− : 

𝑎

2
(
1
0
0
) ; 
𝑎

2
(
0
1
0
) ; 
𝑎

2
(
0
0
1
) ; 
𝑎

2
(
1
1
1
) 

Now, 𝑆(�⃗�) becomes: 

𝑆(�⃗�) = 𝑓Na+(1 + 𝑒
−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙)) 

+ 𝑓Cl−𝑒
−𝑖𝜋(ℎ+𝑘+𝑙)(1 + 𝑒𝑖𝜋(𝑘+𝑙) + 𝑒𝑖𝜋(ℎ+𝑙) + 𝑒𝑖𝜋(ℎ+𝑘)) 

= {
4(𝑓Na+ + 𝑓Cl−), ℎ𝑘𝑙 are all even

4(𝑓Na+ − 𝑓Cl−), ℎ𝑘𝑙 are all odd

0 otherwise

 



5 Lattice Waves 
5.1 Bloch’s Theorem 

A lattice with lattice vector �⃗⃗� has a discrete translational 

symmetry. Hence, for the displacement 𝑢�⃗⃗� at lattice point �⃗⃗� is 
true: 

𝑢�⃗⃗� = 𝑒
𝑖�⃗⃗��⃗⃗�𝑢0⃗⃗⃗ 

This becomes clear, if one looks at the harmonic wave solution: 

𝑒𝑖�⃗⃗��⃗⃗�𝑢0⃗⃗⃗ = 𝑒
𝑖�⃗⃗��⃗⃗�𝐴𝑒𝑖(�⃗⃗�0⃗⃗⃗−𝜔𝑡) = 𝐴𝑒𝑖(�⃗⃗��⃗⃗�−𝜔𝑡) = 𝑢�⃗⃗�  

Obviously, it is enough, to consider the �⃗�’s of the first Brillouin 

zone, since �⃗�′ = �⃗� + �⃗� yields: 

𝑢�⃗⃗� = 𝐴𝑒
𝑖(�⃗⃗�′�⃗⃗�−𝜔𝑡) = 𝐴𝑒𝑖

((�⃗⃗�+�⃗�)�⃗⃗�−𝜔𝑡) = 𝐴𝑒𝑖(�⃗⃗��⃗⃗�−𝜔𝑡) 

Remember, that 𝑒𝑖�⃗⃗��⃗� = 1. 
 

 

5.2 Monoatomic Chain 
Let there be a 1D chain with 𝑁 atoms at positions 𝑥𝑛 = 𝑛𝑎, 𝑛 ∈ ℕ 
with mass 𝑚, connected by springs with spring constant 𝜅. Using 
periodic boundary conditions, the last and the first atom are also 
connected by spring. The force on the 𝑛-th particle is: 
𝐹𝑛 = −𝜅(𝑢𝑛 − 𝑢𝑛−1) − 𝜅(𝑢𝑛 − 𝑢𝑛+1) = −𝜅(2𝑢𝑛 − 𝑢𝑛−1 − 𝑢𝑛+1)
= 𝑚�̈�𝑛  

with displacements 𝑢𝑛. To get the normal modes, one uses 
𝑢𝑛~𝑒

−𝑖𝜔𝑡 where all atoms have the same time dependence: 
−𝜅(2𝑢𝑛 − 𝑢𝑛−1 − 𝑢𝑛+1) = −𝑚𝜔

2𝑢𝑛               (∗) 
As a matrix, this looks like this: 

𝜅

𝑚

(

 
 

2 −1 −1
−1 2 −1

−1 2 −1

−1 −1 2 )

 
 

(

 
 

𝑢1
𝑢2
𝑢3

𝑢𝑁)

 
 
= 𝜔2

(

 
 

𝑢1
𝑢2
𝑢3

𝑢𝑁)

 
 

 

One solution is like a wave travelling through the chain: 

𝑢𝑛(𝑡) = 𝐴𝑒
−𝑖(𝑞𝑛𝑎−𝜔𝑡) 

Plugging in into (∗) yields: 
−𝜅(2𝑒−𝑖𝑞𝑛𝑎 − 𝑒−𝑖𝑞𝑛𝑎𝑒𝑖𝑞𝑎 − 𝑒−𝑖𝑞𝑛𝑎𝑒−𝑖𝑞𝑎) = −𝑚𝜔2𝑒−𝑖𝑞𝑛𝑎     

⟺     
2𝜅

𝑚
(1 −

1

2
(𝑒𝑖𝑞𝑎 + 𝑒−𝑖𝑞𝑎)) = 𝜔2    

            ⟺      𝜔2 =
2𝜅

𝑚
(1 − cos 𝑞𝑎) =

4𝜅

𝑚
sin2 (

𝑞𝑎

2
) 

And hence, the “phonon dispersion relation” follows as: 

𝜔(𝑞) = 2√
𝜅

𝑚
|sin (

𝑞𝑎

2
)| 

If the lattice constant is 𝑎, the reciprocal lattice constant is 2𝜋/𝑎 
and hence, the first Brillouin zone is 𝑞 ∈ [−𝜋 𝑎⁄ , 𝜋 𝑎⁄ ]. At 𝑞 =
−𝜋 𝑎⁄ , 𝜋 𝑎⁄ , 𝜔(𝑞) has maxima and repeats itself afterwards 
periodically: Therefore, higher Brillouin zones can be translated 
back into the first one. 
Since the lattice point are 
discrete, there are always 
many ways for many 𝑞’s 
to find waves fitting through 
all the point, but there is always one with the largest wavelength 
and the smallest 𝑞1 ∈ [−𝜋 𝑎⁄ , 𝜋 𝑎⁄ ]. 

For 𝑞 → 0 (𝜆 ≫ 𝑎): 𝜔 ≈ √𝜅 𝑚⁄ 𝑎𝑞 

⟹      𝑣 =
𝜕𝜔

𝜕𝑞
= √

𝜅

𝑚
𝑎 = √

𝜅𝑎

𝑚 𝑎⁄
= √

𝐶

𝜌
 

Here, 𝐶 is the elastic modulus, 𝜌 the densitiy and hence, 𝑣 the 
speed of sound. 

max𝜔(𝑞) = 2√𝜅 𝑚⁄  

The periodic boundary condition yields 𝑢𝑛+𝑁 = 𝐴𝑒
𝑖𝑞(𝑛+𝑁)𝑎−𝑖𝜔𝑡 =

𝐴𝑒𝑖𝑞𝑛𝑎−𝑖𝜔𝑡 = 𝑢𝑛. Hence, 𝑞𝑁𝑎 ∈ 2𝜋ℤ    ⟺      𝑞 ∈ 2𝜋ℤ/𝑁𝑎.  
⟹      Δ𝑞 = 2𝜋 𝑁𝑎⁄    ⟹      Number of modes:   (2𝜋 𝑎⁄ ) Δ𝑞⁄ = 𝑁 

 

 

 

5.3 Diatomic Chain 
A diatomic chain consists of two different atoms (upper and 
lower case letters): 

𝑀�̈�𝑛 = −𝜅(𝑈𝑛 − 𝑢𝑛−1) − 𝜅(𝑈𝑛 − 𝑢𝑛) 
𝑀�̈�𝑛 = −𝜅(𝑢𝑛 − 𝑈𝑛) − 𝜅(𝑢𝑛 − 𝑈𝑛) 

Note, that 𝑛 does not number atoms but bases. Using the Ansatz 
𝑈𝑛 = 𝐴𝑒

𝑖𝑞𝑛𝑎𝑒−𝑖𝜔𝑡           𝑢𝑛 = 𝐵𝑒
𝑖𝑞𝑛𝑎𝑒−𝑖𝜔𝑡  

yields 
−𝜔2𝑀𝐴 = −𝜅(2𝐴 − 𝐵𝑒−𝑖𝑞𝑎 − 𝐵) 
−𝜔2𝑚𝐵 = −𝜅(2𝐵 − 𝐴𝑒𝑖𝑞𝑎 − 𝐴) 

which is in matrix form 

(

2𝜅

𝑀
−
𝜅

𝑀
(1 + 𝑒−𝑖𝑞𝑎)

−
𝜅

𝑚
(1 + 𝑒𝑖𝑞𝑎)

2𝜅

𝑚

)(
𝐴
𝐵
) = 𝜔2 (

𝐴
𝐵
) 

This matrix has the eigenvalues 

𝜔2(𝑞) =
𝜅(𝑀 +𝑚)

𝑀𝑚
± 𝜅√(

𝑀 +𝑚

𝑀𝑚
)
2

−
4

𝑀𝑚
sin2

𝑞𝑎

2
 

This is the phonon dispersion relation for 
1D diatomic chain. The lower branch is 
called the acustic mode, the upper one 
the optical mode. Hence, the speed of 
sound is 𝜕𝜔/𝜕𝑞. Since for audible sound 
𝑞 ≪ 𝜋 𝑎⁄ , those effects take place near 
zero, where the speed of sound is 
constant for variation of 𝑞. 
 
Amplitude of the two atoms (using equation of motion): 

𝐵

𝐴
=

2𝜅 − 𝜔2𝑀

𝜅(1 + 𝑒−𝑖𝑞𝑎)
 

For 𝑞𝑎 ≪ 1 (hence, center of Brillouin zone): 

𝜔2(𝑞) ≈
𝜅(𝑀 +𝑚)

𝑀𝑚
± 𝜅√(

𝑀 +𝑚

𝑀𝑚
)
2

−
4

𝑀𝑚
(
𝑞𝑎

2
)
2

=
𝜅(𝑀 +𝑚)

𝑀𝑚
(1 ±√1 −

𝑀𝑚

(𝑀 +𝑚)2
𝑞2𝑎2)

≈
𝜅(𝑀 +𝑚)

𝑀𝑚
(1 ± (1 −

𝑀𝑚

2(𝑀 +𝑚)2
𝑞2𝑎2))

=
𝜅(𝑀 +𝑚)

𝑀𝑚
(1 ± 1 ∓

𝑀𝑚

2(𝑀 +𝑚)2
𝑞2𝑎2) ≈

{
 

 
𝜅𝑞2𝑎2

2(𝑀 +𝑚)
LA

2𝜅(𝑀 +𝑚)

𝑀𝑚
LO

 

(LA = longitudinal acoustic, LO = longitudinal optical) 

LA:         
𝐵

𝐴
≈
2𝜅 −

𝜅𝑞2𝑎2

2(𝑀 +𝑚)
𝑀

𝜅(1 + 1)
≈ 1          same amplitude, phase 

LA:         
𝐵

𝐴
≈
2𝜅 −

2𝜅(𝑀 +𝑚)
𝑀𝑚

𝑀

𝜅(1 + 1)
= −

𝑀

𝑚
                          antiphase 

For 𝑞 → ±𝜋/𝑎: 

𝜔2 ≈
𝜅(𝑀 +𝑚)

𝑀𝑚
± 𝜅√(

𝑀 +𝑚

𝑀𝑚
)
2

−
4

𝑀𝑚

=
𝜅(𝑀 +𝑚)

𝑀𝑚
± 𝜅√

𝑀2 + 2𝑀𝑚 +𝑚2 − 4𝑀𝑚

(𝑀𝑚)2

=
𝜅(𝑀 +𝑚)

𝑀𝑚
±
𝜅(𝑀 −𝑚)

𝑀𝑚
= {

2𝜅

𝑀
LA

2𝜅

𝑚
LO

 

LA:         
𝐵

𝐴
≈

2𝜅 − 2𝜅

𝜅(1 + 𝑒−𝑖𝑞𝑎)
= 0          𝑀 oscillates,𝑚 at rest 

LA:         
𝐵

𝐴
≈
2𝜅 −

2𝜅
𝑚
𝑀

𝜅(1 − 1)
= ∞             𝑀 at rest,𝑚 oscillates 



6 Thermal Properties due to 

Phonons 
6.1 Excited States of the Modes 
For a system with a 𝑝-atom basis, 𝑁 lattice points and motion in 
𝑑 dimension, there are 𝑝𝑑 branches and 𝑁𝑝𝑑 normal modes. 
Let’s label the branches with an index 𝑠 and the modes using the 
wave vector �⃗�. Then, the normal modes are characterized by 
𝜔𝑠(�⃗�). For one particular harmonic oscillator, the energy is: 

𝜖𝑠�⃗⃗� = ℏ𝜔𝑠(�⃗�)(𝑛𝑠�⃗⃗� + 1/2) 

𝑛𝑠�⃗⃗� is given by the Bose-Einstein-distribution with 𝜇 = 0: 

𝑛𝑠�⃗⃗� =
1

𝑒𝛽ℏ𝜔𝑠(�⃗⃗�) − 1
 

Therefore, the total energy can be given as (𝐸0 ≡ 𝐸(𝑇 = 0)): 

𝐸 =∑𝜖𝑠�⃗⃗�
𝑠,�⃗⃗�

=∑ℏ𝜔𝑠(�⃗�)(𝑛𝑠�⃗⃗� + 1/2)

𝑠,�⃗⃗�

= 𝐸0 +∑
ℏ𝜔𝑠(�⃗�)

𝑒𝛽ℏ𝜔𝑠(�⃗⃗�) − 1
𝑠,�⃗⃗�

 

 

 

6.2 Einstein Model 
Einstein’s assumption: 𝜔𝑠(�⃗�) = 𝜔𝐸 = const. 

          ⟹ 𝐸 = 𝐸0 +∑
ℏ𝜔𝐸

𝑒𝛽ℏ𝜔𝐸 − 1
𝑠,�⃗⃗�

= 𝐸0 +𝑁𝑝𝑑
ℏ𝜔𝐸

𝑒𝛽ℏ𝜔𝐸 − 1
 

          ⟹ 𝐶 =
𝜕𝐸

𝜕𝑇
= 𝑘𝑁𝑝𝑑 (

ℏ𝜔𝐸
𝑘𝑇

)
2 𝑒𝛽ℏ𝜔𝐸

(𝑒𝛽ℏ𝜔𝐸 − 1)2
 

For 𝑘𝑇 ≫ ℏ𝜔𝐸: 

          ⟹ 𝐶 ≈ 𝑘𝑁𝑝𝑑 (
ℏ𝜔𝐸
𝑘𝑇2

)
2 1

(𝛽ℏ𝜔𝐸)
2
= 𝑛𝑅𝑝𝑑 

For 𝑑 = 3, 𝑛 = 𝑝 = 1, this is just 3𝑅 ≈ 25 J K⁄ mol. For 𝑘𝑇 ≪ ℏ𝜔𝐸  

          ⟹ 𝐶 ≈ 𝑘𝑁𝑝𝑑 (
ℏ𝜔𝐸
𝑘𝑇2

)
2

𝑒−𝛽ℏ𝜔𝐸  ~ 𝑒−𝛽ℏ𝜔𝐸 = 𝑒−Θ𝐸/𝑇 

with the Einstein temperature Θ𝐸 = ℏ𝜔𝐸/𝑘. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 Debye Model 
To calculate a sum ∑ 𝐹𝑠(�⃗�)𝑠,�⃗⃗� , it’s convenient to turn it into an 

integral ∫𝑑𝑑𝑞/𝐷𝑑(𝑞), which needs the density of 𝑞-states. In 
section 1.3, these density is given by 𝐷𝑑(𝑞) = (𝐿/2𝜋)

𝑑: 
One dimension: 

∫ 𝑑𝑞 
𝐿

2𝜋

𝜋 𝑎⁄

−𝜋 𝑎⁄

= ∫ 𝑑𝑞 
𝐿

𝜋

𝜋 𝑎⁄

0

= ∫ 𝑑𝜔
1

𝑑𝜔
𝑑𝑞

 
𝐿

𝜋

𝜔max

0

⟹ 𝐷1(𝜔) =
𝐿

𝜋
𝑑𝜔
𝑑𝑞

 

Now, Debye’s approximation is 𝜔(𝑞) ≈ 𝑣𝑠𝑞 (linear). Hence: 

𝐷1(𝜔) =
𝐿

𝜋𝑣𝑠
 ⟹  ∫ 𝑑𝜔 𝐷1(𝜔)

𝜔𝐷
0

=
!
𝑁 ⟺ 𝜔𝐷 =

𝜋𝑣𝑠𝑁

𝐿
=

𝜋𝑣𝑠

𝑎
= 𝑣𝑠𝑞𝑑   

Three dimensions: 

∫𝑑3𝑞 (
𝐿

2𝜋
)
3

= ∫𝑑𝑞 4𝜋𝑞2  (
𝐿

2𝜋
)
3

= ∫𝑑𝜔
4𝜋𝜔2

𝑣𝑠
3
 (
𝐿

2𝜋
)
3

 

In the last step, using 𝜔(𝑞) ≈ 𝑣𝑠𝑞  led to 𝑑𝑞 = 𝑑𝜔/𝑣𝑠. Hence: 

𝐷3(𝜔) =
4𝜋𝜔2

𝑣𝑠
3
 (
𝐿

2𝜋
)
3

=
𝑉

2𝜋2
𝜔2

𝑣𝑠
3

 

In 3D, there are three different acoustic branches with sound 
velocities 𝑣𝑠,𝑖 , 𝑖 = 1,2,3. The densities of states of each branches 
can naturally be added up to the total density of states: 

𝐷3(𝜔) =
𝑉

2𝜋2
(
1

𝑣𝑠,1
3 +

1

𝑣𝑠,2
3 +

1

𝑣𝑠,3
3 )𝜔

2 =
𝑉

2𝜋2
3

𝑣0
3 𝜔

2 

For simplicity, they are put together into an effective velocity 𝑣0. 

∫ 𝑑𝜔 𝐷3(𝜔)
𝜔𝐷

0

=
𝑉

2𝜋2𝑣0
3 𝜔𝐷

3 =
!
3𝑁    ⟺    

3𝑉

2𝜋2𝑣0
3 =

9𝑁

𝜔𝐷
3  

Hence, it’s possible to calculate the energy: 

𝐸 = 𝐸0 +∑
ℏ𝜔𝑠(�⃗�)

𝑒𝛽ℏ𝜔𝑠(�⃗⃗�) − 1
𝑠,�⃗⃗�

= 𝐸0 +∫ 𝑑𝜔 𝐷3(𝜔)
ℏ𝜔

𝑒𝛽ℏ𝜔 − 1

𝜔𝐷

0

= 𝐸0 +
9𝑁

𝜔𝐷
3 ∫ 𝑑𝜔 𝜔2

ℏ𝜔

𝑒𝛽ℏ𝜔 − 1

𝜔𝐷

0

 

⟹      𝐶 =
𝜕𝐸

𝜕𝑇
=
9𝑁𝑘

𝜔𝐷
3 ∫ 𝑑𝜔 𝜔2 (

𝛽ℏ𝜔

𝑒𝛽ℏ𝜔 − 1
)
2𝜔𝐷

0

𝑒𝛽ℏ𝜔

= 9𝑁𝑘 (
𝑇

Θ𝐷
)
3

∫ 𝑑𝑥
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2

𝜃𝐷
𝑇

0

 

Here, Θ𝐷 = ℏ𝜔𝐷/𝑘 and 𝑥 = 𝛽ℏ𝜔. 
For 𝑇 ≫ Θ𝐷: 

𝐶 ≈ 9𝑁𝑘 (
𝑇

Θ𝐷
)
3

∫ 𝑑𝑥
𝑥4(1 + 𝑥)

𝑥2

𝜃𝐷
𝑇

0

≈ 9𝑁𝑘 (
𝑇

Θ𝐷
)
3

∫ 𝑑𝑥𝑥2
𝜃𝐷
𝑇

0

= 3𝑁𝑘 

For 𝑇 ≪ Θ𝐷: 
Θ𝐷
𝑇
→ ∞   ⟹      𝐶 ~ 𝑇3 



7 Electron States in Crystals 
7.1 Bloch’s Theorem 
In the ideal Fermi-gas idea, electrons are treated as free particles 

(𝑉 = 0, 𝜓 ~ 𝑒𝑖𝑘𝑥). In a lattice: 𝑉(𝑟) = 𝑉(𝑟 + �⃗⃗�) and hence 

|𝜓(𝑟)|2 = |𝜓(𝑟 + �⃗⃗�)|
2

     but in general     𝜓(𝑟) ≠ 𝜓(𝑟 + �⃗⃗�). 

⟹       𝜓(𝑟 + �⃗⃗�) = 𝑒𝑖Θ(�⃗⃗�)𝜓(𝑟) 

What is the function Θ(�⃗⃗�)? 

𝜓(𝑟 + �⃗⃗�1 + �⃗⃗�2) = {
𝑒𝑖Θ(�⃗⃗�1+�⃗⃗�2)𝜓(𝑟)

𝑒𝑖Θ(�⃗⃗�2)𝑒𝑖Θ(�⃗⃗�1)𝜓(𝑟)
 

Hence, Θ is linear in �⃗⃗� and dimensionless, which yields Θ(�⃗⃗�) =

�⃗⃗��⃗⃗�. This yields Bloch’s Theorem in two equivalent versions: 

𝜓(𝑟 + �⃗⃗�) = 𝑒𝑖�⃗⃗��⃗⃗�𝜓(𝑟);    𝜓(𝑟) = 𝑒𝑖�⃗⃗�𝑟𝑢�⃗⃗�(𝑟),   𝑢�⃗⃗�(𝑟 + �⃗⃗�) = 𝑢�⃗⃗�(𝑟) 

Plug 𝜓(𝑟) = 𝑒𝑖�⃗⃗�𝑟𝑢�⃗⃗�(𝑟) into the Schrödinger equation and get: 

−
ℏ2

2𝑚
(∇ + 𝑖�⃗⃗�)

2
𝑢�⃗⃗�(𝑟) + 𝑉(𝑟)𝑢�⃗⃗�(𝑟) = 𝐸�⃗⃗�𝑢�⃗⃗�(𝑟) 

Properties: 𝐸𝑛,�⃗⃗� = 𝐸𝑛,−�⃗⃗�  and 𝐸𝑛,�⃗⃗� = 𝐸𝑛,�⃗⃗�+�⃗� . 
 

 

7.2 Energy Bands 
Schrödinger Equation (actually 𝐸�⃗⃗� ≡ 𝐸�⃗⃗�,𝑛): 

−
ℏ2

2𝑚
∇2𝜓�⃗⃗�(𝑟) + 𝑉(𝑟)𝜓�⃗⃗�(𝑟) = 𝐸�⃗⃗�𝜓�⃗⃗�(𝑟) 

Since 𝑢�⃗⃗� and 𝑉 are periodic, recall section 3.9: 

𝑢�⃗⃗�(𝑟) = ∑𝐶�⃗⃗�(�⃗�)𝑒
𝑖�⃗�𝑟

�⃗�

,          𝑉(𝑟) = ∑𝑉�⃗�𝑒
𝑖�⃗�𝑟

�⃗�

 

Hence, calculate first 

−
ℏ2

2𝑚
∇2𝜓�⃗⃗�(𝑟) = −

ℏ2

2𝑚
∇2∑𝐶�⃗⃗�(�⃗�)𝑒

𝑖(�⃗⃗�+�⃗�)𝑟

�⃗�

=∑𝐶�⃗⃗�(�⃗�)
ℏ2(�⃗⃗� + �⃗�)

2

2𝑚
𝑒𝑖�⃗⃗�𝑟𝑒𝑖�⃗�𝑟

�⃗�

=∑𝐶�⃗⃗�(�⃗�)𝐸�⃗⃗�+�⃗�
0 𝑒𝑖�⃗⃗�𝑟𝑒𝑖�⃗�𝑟

�⃗�

 

(with 𝐸
�⃗⃗�+�⃗�
0 ≔ ℏ2(�⃗⃗� + �⃗�)

2
2𝑚⁄ ) and the SG is: 

∑𝐶�⃗⃗�(�⃗�)(𝐸�⃗⃗�+�⃗�
0 − 𝐸�⃗⃗�)𝑒

𝑖�⃗�𝑟

�⃗�

+∑𝑉�⃗�′𝐶�⃗⃗�(�⃗�)𝑒
𝑖(�⃗�+�⃗�′)𝑟

�⃗�,�⃗�′

= 0 

Now, multiply both sides by 𝑒−𝑖�⃗�
′′𝑟 , integrate and use 

∫𝑑3𝑟 𝑒𝑖(�⃗�−�⃗�
′′)𝑟 = 𝛿�⃗�,�⃗�′′: 

𝐶�⃗⃗�(�⃗�
′′)(𝐸

�⃗⃗�+�⃗�′′
0 − 𝐸�⃗⃗�) +∑𝑉�⃗�′𝐶�⃗⃗�(�⃗�

′′ − �⃗�′)

�⃗�′

= 0 

Now get a matrix for the 1D case, where �⃗�′′ = 𝐺𝑛 with 𝐺𝑛 =

𝑛 2𝜋 𝑎⁄ . For example for �⃗�′′ = 𝐺2 = 2𝐺1 is the equation above: 

𝐶𝑘(2𝐺1)(𝐸𝑘+2𝐺2
0 − 𝐸𝑘) + 𝑉0𝐶𝑘(2𝐺1) + 𝑉𝐺1𝐶𝑘(𝐺1) + 𝑉2𝐺1𝐶𝑘(0)

+ ⋯ = 0 
Hence, the matrix is: 

(

  
 

⋮ ⋮ ⋮ ⋮ ⋰
(𝐸𝑘

0 − 𝐸𝑘 + 𝑉0) 𝑉−𝐺1 𝑉−𝐺2 𝑉−𝐺3 ⋯

𝑉𝐺1 (𝐸𝑘+𝐺2
0 − 𝐸𝑘 + 𝑉0) 𝑉−𝐺1 𝑉−𝐺2 ⋯

𝑉2𝐺1 𝑉𝐺1 (𝐸𝑘+2𝐺2
0 − 𝐸𝑘 + 𝑉0) 𝑉−𝐺1 ⋯

⋮ ⋮ ⋮ ⋮ ⋱)

  
 

(

 
 

⋮
𝐶𝑘(0)

𝐶𝑘(𝐺1)

𝐶𝑘(2𝐺1)
⋮ )

 
 
= 0 

or equivalently: 

(

  
 

⋮ ⋮ ⋮ ⋮ ⋰
(𝐸𝑘

0 + 𝑉0) 𝑉−𝐺1 𝑉−𝐺2 𝑉−𝐺3 ⋯

𝑉𝐺1 (𝐸𝑘+𝐺2
0 + 𝑉0) 𝑉−𝐺1 𝑉−𝐺2 ⋯

𝑉2𝐺1 𝑉𝐺1 (𝐸𝑘+2𝐺2
0 + 𝑉0) 𝑉−𝐺1 ⋯

⋮ ⋮ ⋮ ⋮ ⋱)

  
 

(

 
 

⋮
𝐶𝑘(0)

𝐶𝑘(𝐺1)

𝐶𝑘(2𝐺1)
⋮ )

 
 
= 𝐸𝑘

(

 
 

⋮
𝐶𝑘(0)

𝐶𝑘(𝐺1)

𝐶𝑘(2𝐺1)
⋮ )

 
 

 

Again, actually 𝐸𝑘 ≡ 𝐸𝑘,𝑛. For each 𝑛, 𝐸𝑘  defines an energy band 

in 𝑘-space.  

 

 

 

 

 

 

7.3 Empty Lattice Approximation 
Assume, 𝑉(𝑟) = 0, but keep lattice concepts (periodicity etc.). 
Using the equation from 7.2 

𝐶�⃗⃗�(�⃗�
′′)(𝐸

�⃗⃗�+�⃗�′′
0 − 𝐸�⃗⃗�) +∑𝑉�⃗�′𝐶�⃗⃗�(�⃗�

′′ − �⃗�′)

�⃗�′

= 0 

with 𝑉�⃗�′ = 0 yields 

𝐸�⃗⃗� = 𝐸�⃗⃗�+�⃗�
0 =

ℏ2(�⃗⃗� + �⃗�)
2

2𝑚
 

Hence, for each �⃗⃗�, which is restricted to the 1st Brillouin zone, 

there a multiple possible energy values (for multiple �⃗�’s). 
 

 

7.4 Nearly Free Electron Model 
Assume in 1D a weak 𝑉 and use perturbation theory with the 
free electron as the known Hamiltonian and the zeroth energy 
order: 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑟),          𝐸

�⃗⃗�+�⃗�
0 =

ℏ2

2𝑚
(�⃗⃗� + �⃗�)

2
 

Here, the energy spectrum in continuous, the energy is defined 

by |�⃗⃗�|. Take now a fixed but arbitrary �⃗⃗� and define 𝜖
�⃗⃗�′
0 ≔ 𝐸

�⃗⃗�+�⃗�
0  

with �⃗⃗�′ = �⃗⃗� + �⃗�. 
NON DEGENERATE CASE: 

For this �⃗⃗�′, the unperturbed eigenfunction is 𝜓 = |�⃗⃗�′⟩ =

𝑒𝑖�⃗⃗�
′𝑟/√𝑉 and hence, the first order correction is an unimportant 

energy shift: 

𝜖
�⃗⃗�′
1 = ⟨�⃗⃗�′|𝑉|�⃗⃗�′⟩ =

1

𝑉
∫𝑑3𝑟 𝑒−𝑖�⃗⃗�

′𝑟𝑉(𝑟)𝑒𝑖�⃗⃗�
′𝑟 =

1

𝑉
∫𝑑3𝑟 𝑉(𝑟) = �̅� 

The second order term for this �⃗⃗�′ is: 

𝜖
�⃗⃗�′
2 = ∑

|⟨�⃗⃗�′|𝑉|�⃗⃗�⟩|
2

𝜖
�⃗⃗�
0 − 𝜖

�⃗⃗�′
0

�⃗⃗�′=�⃗⃗�+�⃗�

�⃗�≠0

 

 

⟨�⃗⃗�′|𝑉|�⃗⃗�⟩ =
1

𝑉
∫𝑑3𝑟 𝑒𝑖(�⃗⃗�−�⃗⃗�

′)𝑟𝑉(𝑟) =
1

𝑉
∫𝑑3𝑟 𝑒−𝑖�⃗�𝑟𝑉(𝑟) = 𝑉�⃗�  

Hence, the total energy is 

𝐸�⃗⃗� =
ℏ2

2𝑚
(�⃗⃗� + �⃗�)

2
+ �̅� + ∑

|𝑉�⃗�|
2

𝜖
�⃗⃗�
0 − 𝜖

�⃗⃗�′
0

�⃗⃗�′=�⃗⃗�+�⃗�

�⃗�≠0

 

with 𝑉�⃗� = 𝑉�⃗⃗�′−�⃗⃗� . Here, 𝜖
�⃗⃗�′
0  represents the energy of another band 

at �⃗⃗�′. If those bands are far from each other, 𝜖
�⃗⃗�
0 − 𝜖

�⃗⃗�′
0  is big and 

the correction negligible. But for some �⃗⃗�, there a bands close to 

each other. If 𝜖
�⃗⃗�
0 > 𝜖

�⃗⃗�′
0 , the correction is positive and the other 

way around. Hence, the (formerly) small distance increases. 
DEGENERATE CASE: 

For some �⃗⃗�-vectors, there is a degeneracy, meaning two 
branches are overlapping (at the Brillouin zone boundary), in 
1D e.g. 𝐸𝜋/𝑎

0 = 𝐸𝜋 𝑎⁄ −2𝜋/𝑎
0  (the bands for 𝐺 = 0 and 𝐺 = −2𝜋/𝑎). 

Now, take a look at the matrix elements of a degenerate 

subspace of |�⃗⃗�⟩ and |�⃗⃗� + �⃗�⟩ = |�⃗⃗�′⟩ with 𝐸
�⃗⃗�
0 = 𝐸

�⃗⃗�′−�⃗�
0 : 

(
⟨�⃗⃗�|𝑉|�⃗⃗�⟩ ⟨�⃗⃗�|𝑉|�⃗⃗�′⟩

⟨�⃗⃗�′|𝑉|�⃗⃗�⟩ ⟨�⃗⃗�′|𝑉|�⃗⃗�′⟩
) = (

�̅� 𝑉�⃗⃗�′−�⃗⃗�
𝑉�⃗⃗�−�⃗⃗�′ �̅�

) = (
�̅� 𝑉�⃗⃗�′−�⃗⃗�

𝑉
�⃗⃗�′−�⃗⃗�
∗ �̅�

) 

The eigenvalues are: 

|
�̅� − 𝜖

�⃗⃗�
1 𝑉�⃗⃗�′−�⃗⃗�

𝑉
�⃗⃗�′−�⃗⃗�
∗ �̅� − 𝜖

�⃗⃗�
1| = (�̅� − 𝜖�⃗⃗�

1)
2
− |𝑉�⃗⃗�′−�⃗⃗�|

2
=
!
0 

⟺     𝜖1,2 = �̅� ± |𝑉�⃗⃗�′−�⃗⃗�| 

Hence, the total energy is: 

𝐸�⃗⃗� = 𝐸�⃗⃗�
0 + �̅� ± |𝑉�⃗⃗�′−�⃗⃗�| 

Therefore, the gap between the bands is due to the perturbation 

2|𝑉�⃗⃗�′−�⃗⃗�|. 
 

 

 



7.5 Tight Binding Model 

Different approach: Look at the atomic states 𝜙(𝑟 − �⃗⃗�) of an 

atom at �⃗⃗� first: 

(−
ℏ2

2𝑚
∇2 + 𝑈(𝑟 − �⃗⃗�))𝜙(𝑟 − �⃗⃗�) = 𝐸𝑎𝜙(𝑟 − �⃗⃗�) 

Here, 𝑈 is the atomic potential and 𝐸𝑎  the atomic energy. Since 

𝜙(𝑟 − �⃗⃗�) is a full basis, an electronic state 𝜓 can be written as: 

𝜓(𝑟) =∑𝐶�⃗⃗�𝜙(𝑟 − �⃗⃗�)

�⃗⃗�

 

where the coefficient should be 𝐶�⃗⃗� = 1 √𝑁⁄ 𝑒𝑖�⃗⃗��⃗⃗�, to obey Bloch’s 
theorem. Hence, the so called Boch-sum is: 

𝜓(𝑟) =
1

√𝑁
∑𝑒𝑖�⃗⃗��⃗⃗�𝜙(𝑟 − �⃗⃗�)

�⃗⃗�

 

Schrödinger equation: 

𝐸𝜓 =
!
(−

ℏ2

2𝑚
∇2 + 𝑉(𝑟))𝜓(𝑟) = (−

ℏ2

2𝑚
∇2 + 𝑈 + 𝑉 − 𝑈)𝜓

= 𝐻atom𝜓 + (𝑉 − 𝑈)𝜓 = 𝐸𝑎𝜓 + (𝑉 − 𝑈)𝜓 

Now apply ∫𝑑𝑉 𝜓∗ on both sides and later, define �⃗⃗�′′ = �⃗⃗� − �⃗⃗�′: 

𝐸 = 𝐸𝑎 −∫𝑑𝑉𝜓
∗(𝑈 − 𝑉)𝜓

= 𝐸𝑎 −
1

𝑁
∑𝑒𝑖�⃗⃗�(�⃗⃗�−�⃗⃗�

′)∫𝑑𝑉𝜙∗(𝑟 − �⃗⃗�′)(𝑈 − 𝑉)𝜙(𝑟 − �⃗⃗�)

�⃗⃗�,�⃗⃗�′

= 𝐸𝑎 −
1

𝑁
∑ 𝑒𝑖�⃗⃗��⃗⃗�

′′
∫𝑑𝑉𝜙∗(𝑟)(𝑈 − 𝑉)𝜙(𝑟 − �⃗⃗�′′)

�⃗⃗�,�⃗⃗�′′

= 𝐸𝑎 −∑𝑒𝑖�⃗⃗��⃗⃗�∫𝑑𝑉𝜙∗(𝑟)(𝑈 − 𝑉)𝜙(𝑟 − �⃗⃗�)

�⃗⃗�

= 𝐸𝑎 −∑𝑒𝑖�⃗⃗��⃗⃗�𝐴(�⃗⃗�)

�⃗⃗�

 

Here, ∑ 1�⃗⃗� = 𝑁 was used, and the label was changed like �⃗⃗�′′ →

�⃗⃗�. 𝐴(�⃗⃗�) is the hopping integral. 

 
For a monoatomic simple cubic crystal with lattice constant 𝑎, 
the nearest neighbour atoms are at 

�⃗⃗�1,4 = (±𝑎, 0,0),     �⃗⃗�2,5 = (0,±𝑎, 0)     and     �⃗⃗�3,6 = (0,0, ±𝑎). 

Define 𝛼 ≔ 𝐴(�⃗⃗�0) = 𝐴(0⃗⃗) and 𝑡 ≔ 𝐴(�⃗⃗�𝑖), 1 ≤ 𝑖 ≤ 6. Hence, the 

energy up to nearest neighbour interaction is: 

𝐸 ≈ 𝐸𝑎 −∑𝑒𝑖�⃗⃗��⃗⃗�𝑖𝐴(�⃗⃗�𝑖)

6

𝑖=0

= 𝐸𝑎 − 𝛼 − 𝑡∑𝑒𝑖�⃗⃗��⃗⃗�𝑖

6

𝑖=1

= 𝐸𝑎 − 𝛼 − 2𝑡∑cos(�⃗⃗��⃗⃗�𝑖)

3

𝑖=1

= 𝐸𝑎 − 𝛼 − 2𝑡∑cos(𝑎𝑘𝑖)

3

𝑖=1

. 

(𝑘𝑖 = 𝑘𝑥,𝑦,𝑧) Here was used, that �⃗⃗�1 = −�⃗⃗�4 etc. Consider �⃗⃗� → 0 

and use cos(𝑎𝑘𝑖) ≈ 1 − (𝑎𝑘𝑖)
2/2: 

𝐸 ≈ 𝐸𝑎 − 𝛼 − 6𝑡 + 𝑎
2𝑡𝑘2 

For this �⃗⃗� → 0 region, an effective mass 𝑚∗ can be defined by: 
ℏ2𝑘2

2𝑚∗
= 𝑎2𝑡𝑘2     ⟺      𝑚∗ =

ℏ2

2𝑎2𝑡
 

For an arbitrary �⃗⃗�, the reciprocal effective mass tensor is defined 
as: 

(
1

𝑚3
)
𝑖𝑗
=
1

ℏ2
𝜕

𝜕𝑘𝑖

𝜕

𝜕𝑘𝑗
𝐸 

 

 

 

 

 

 

 

 

7.6 Insulators, Semiconductors, Metals 

For 𝑁 primitive cells, in the 1st Brillouion zone, there are 𝑁 �⃗⃗�-
points, each of which can hold two electrons (spin). Hence, each 
energy band can host at most 2𝑁 electrons. 
The number of electrons of a material is determined by the 
number of atoms per primitive cell and by the valence electrons 
per atom. If there are only full and empty bands (no “half-full” 
bands), the material is either an isolator or a semiconductor, 
depending on the gap width between the valence and 
conduction band. Metalls have half-full bands. 
Often band can overlap, so that there can exist several half-full 
bands. 
 

7.7 Quantum Oscillations 
Quantum oscillations occur if there is a magnetic field. Then: 

𝑑𝑝

𝑑𝑡
= ℏ

𝑑�⃗⃗�

𝑑𝑡
= −𝑒 �⃗� × �⃗⃗� 

Using �⃗� = 1/ℏ∇�⃗⃗�𝐸(�⃗⃗�), it follows, that 

→ 
𝑑�⃗⃗�

𝑑𝑡
⊥ �⃗⃗�, hence the �⃗⃗�-component parallel to �⃗⃗� is constant. 

→
𝑑�⃗⃗�

𝑑𝑡
⊥ �⃗� =

1

ℏ
∇�⃗⃗�𝐸, hence the following dot product is 0 =

     
𝑑�⃗⃗�

𝑑𝑡
∇�⃗⃗�𝐸 = ∑

𝑑𝑘𝑖

𝑑𝑡

𝑑𝐸

𝑑𝑘𝑖𝑖 , and hence 
𝑑𝐸

𝑑𝑡
= 0. 

Therefore, in �⃗⃗�-space, the possible electron orbits are the 
intersections of surfaces of constant energies with planes 

perpendicular to �⃗⃗�. 
Integration over time of the first equation yields: 

ℏ∫𝑑𝑡
𝑑�⃗⃗�

𝑑𝑡
= −𝑒∫𝑑𝑡

𝑑𝑟

𝑑𝑡
× �⃗⃗�     ⟹      �⃗⃗� − �⃗⃗�0 =

𝑒

ℏ
�⃗⃗� × (𝑟 − 𝑟0) 

That is to say, the projection of the orbit on a plane normal to �⃗⃗� 

has the same shape as the orbit in �⃗⃗�-space. 
Semi classical, there is a constriction for closed orbits: 

∮𝑑𝑟 𝑝 = 𝑛ℎ = 𝑛 2𝜋ℏ 

Including a phase 𝛾 and mind the Hamiltonian momentum 
yields: 

(𝑛 + 𝛾) 2𝜋ℏ = ∮𝑑𝑟 𝑝 = ∮𝑑𝑟 (ℏ�⃗⃗� − 𝑒𝐴)

= 𝑒∮𝑑𝑟 �⃗⃗� × 𝑟 − 𝑒∮𝑑𝑟 𝐴 = 𝑒�⃗⃗� ∮ 𝑟 × 𝑑𝑟 − 𝑒∫𝑑𝑆 ∇ × 𝐴

= 2𝑒�⃗⃗�𝑆 − 𝑒∫𝑑𝑆 �⃗⃗� = 2𝑒Φ − 𝑒Φ = 𝑒Φ 

Here, 𝑆 is the surface enclosed by the orbit and Φ is the flux. 

Since �⃗⃗� ∥ 𝑆, this yields: 

𝑆 =
Φ

𝐵
= (𝑛 + 𝛾)

2𝜋ℏ

𝑒𝐵
 

The area of the orbit in reciprocal space is given by 

𝑆rec = (
𝑒

ℏ
|�⃗⃗�|)

2

𝑆          Onsager′s Equation 

The difference of two consecutive orbits is 

Δ𝑆rec = 𝑆rec(𝑛 + 1) − 𝑆rec(𝑛) =
2𝜋𝑒𝐵

ℏ
 

If the 𝐵-field is enhanced, the reciprocal orbits become bigger 
and some of them might break through the fermi surface. For a 
change Δ(1 𝐵⁄ ) in the 𝐵-field, the “distance” between two orbits 
is 

Δ(
1

𝐵
) =

1

𝐵𝑛+1
−
1

𝐵𝑛
=
2𝜋𝑒(𝑛 + 1 + 𝛾)

ℏ𝑆𝑟𝑒𝑐
−
2𝜋𝑒(𝑛 + 𝛾)

ℏ𝑆𝑟𝑒𝑐
=
2𝜋𝑒

ℏ𝑆𝑟𝑒𝑐
=
1

𝐹
 

This is the de Haas-van Alphen effect, 𝐹 is the Haas-van Alphen 
frequency. 



8 Semi-Conductors 
8.1 Concepts of Holes 
In semi-conductors, the valence but is nearly full, except some 
few “holes”, when electrons were excited to the conduction 
band. It is convenient to focus on the holes. 
The properties of the follow from the electron, which has been at 
the spot, where the hole is now: 

�⃗⃗�ℎ = −�⃗⃗�𝑒          𝐸ℎ(�⃗⃗�ℎ) = −𝐸𝑒(�⃗⃗�𝑒)          �⃗�ℎ = �⃗�𝑒          𝑚ℎ
∗ = −𝑚𝑒

∗  

 
For 𝑇 = 0, the conduction band is full of holes and the band 
structure can approximately be described with 

𝐸𝑣(𝑘) = 𝐸𝑣 +
ℏ2𝑘2

2𝑚𝑒
∗
          𝐸𝑐(𝑘) = 𝐸𝑐 +

ℏ2𝑘2

2𝑚ℎ
∗  

The Fermi energy is exactly the middle of the two bands, hence 

𝐸𝐹 = 𝜇(𝑇 = 0) =
𝐸𝑣 + 𝐸𝑐
2

 
 

8.2 The Chemical Potential 
To discuss 𝑇 > 0, the Fermi-Dirac distribution is needed; for 
semi-conductors, 𝐸 − 𝜇 ≫ 𝑘𝑇 is typical: 

𝑓𝐹𝐷(𝐸) =
1

𝑒(𝐸−𝜇) 𝑘𝑇⁄ + 1
≈ 𝑒−(𝐸−𝜇) 𝑘𝑇⁄  

The band structure for the electrons in the conduction band is 

𝐸𝑐(𝑘) = 𝐸𝑐 +
ℏ2𝑘2

2𝑚𝑒
∗

 

with the density of states 

𝑔𝑒(𝐸) =
𝑉

2𝜋2
(
2𝑚

ℏ2
)
3 2⁄

(𝐸 − 𝐸𝑐)
1 2⁄  

Then, the concentration of electrons in the conduction band is 

𝑛𝑐 =
𝑁

𝑉
=
1

𝑉
∫ 𝑑𝐸 𝑔𝑒(𝐸)𝑓𝐹𝐷(𝐸)
∞

𝐸𝑐

= 2 (
𝑚𝑒
∗𝑘𝑇

2𝜋ℏ2
)
3 2⁄

𝑒(𝜇−𝐸𝑐) 𝑘𝑇⁄  

The same can be calculate for the hole concentration in the 
valence band 𝑝𝑣: 

𝑝𝑣 = 2(
𝑚ℎ
∗𝑘𝑇

2𝜋ℏ2
)

3 2⁄

𝑒(𝐸𝑣−𝜇) 𝑘𝑇⁄  

Obviously, the product 𝑛𝑐𝑝𝑣 is independent from 𝜇, it is constant, 
and the constant is 𝑛𝑖

2: 

𝑛𝑐𝑝𝑣 = 4(
𝑘𝑇

2𝜋ℏ2
)
3

(𝑚𝑒
∗𝑚ℎ

∗ )3 2⁄ 𝑒−(𝐸𝑐−𝐸𝑣) 𝑘𝑇⁄ = 𝑛𝑖
2 

𝑛𝑖  is the electron density for an intrinsic (not-doped) semi-
conductor, hence: 

𝑛𝑖 = 2(
𝑘𝑇

2𝜋ℏ2
)
3/2

(𝑚𝑒
∗𝑚ℎ

∗ )3 4⁄ 𝑒−(𝐸𝑐−𝐸𝑣) 2𝑘𝑇⁄  

For an intrinsic semi-conductor is 𝑛𝑖 = 𝑛𝑐 = 𝑝𝑣 . 
Evaluating 𝑛𝑐 = 𝑝𝑣 gives a formula for the chemical potential: 

𝜇 =
𝐸𝑐 + 𝐸𝑣
2

+
3

4
𝑘𝑇 ln

𝑚ℎ
∗

𝑚𝑒
∗
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