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1 Drude model

1.1 Electron Transport

Idea: metal =
Assumptions:
1. Electrons have a scattering time 7, the probability of
scattering within dt ist dt/z.

2. After a scattering event, the electron returns to p=0.

3. In between scatterings, electrons respond to external E-
and B-fiels.

= pt+d)= —0 +(1- —) (B() + Fde)

positive ions + sea of free electrons

o d
=p(t) + Fdt — ?ﬁ(t) + 0(dt?)

Here, dt /7 is scattering probability, 1 — dt/t is not-scattering
probability and F is the Lorentz-force of the external fields.
Division by dt yields:

dﬁ R ﬁ Lorentz Force:
= —=F-= F=—e(E+7xB
dt T ( )
CASEA:E #0, B = 0
ap av
s d—z: —¢E-! o m—-~ —eE — mv/t
Assuming a static state solution, one can assume dv/dt = 0
E _ - ne TE’ _
= eE=-mi & —E= -nev . —j=ok

n: particle densitiy
o: conductivity

= o=ne’t/m
CASEB:E #0, B#0
S m%z —e(E + ¥ x B) —mi/t
Again assuming dv/dt = 0
& eE=—ebxB—-mi/t
- 15 = 15 = —j/ne
& E=—JXB+-j
__)ne g
Here, J X B/ne is the electrical field caused by the Hall-effect!
Assume J = jé, and B = Bé,, it follows
E,=——JB
YT TR N
Since E,, can be measured via voltage and j as well as B are

set by experiment, one can determine n this way!

1.2  Wiedemann-Franz-Law
Like J = aV¢ (E = V), itis also true that j, = kVT, J; being the
thermal current and k the thermal conductivity.
Starting with Boltzmann'’s kinetic theory, itis k = %ncv(v)l (¢,
is heat capacity per particle and A = (v)t the scattering length).
According to kinetic theory, it is:
8kgT 4 k2ntT

=

K=—
mm T m

3
Cy = EkB' (v) =

Using ¢ = ne?7/m, one can erase the unknown parameter t and
define the Lorentz number L:
K 4—kB

L= —= = const. (Wiedemann-Franz Law)
O'T me?

Problem: ¢, was made for gases, but is experimentally wrong for
metals. Same is true for (v).

1.3 Sommerfeld’s Theory

Electrons in metals behave like a wave. To neglect surface
effects, one uses periodic boundary conditions. In 1D, you take a
one dimensional length L and wrap it together to a circle, so that
Y =P(x +L).

Free electrons = (x)~e** = k=n-2n/L, neL
Density of states: D = n/k = L/2m (states per “length-unit” in k-
space)

Filling up N electrons according to the Pauli principle into the

. . N
lowest states, the maximum k is kp = N/4D = Z—L

(the 4 is because of the Pauli principle and because one goes
from —k to k) kj is called “Fermi Wavenumber/-vector”

Corresponding Energy: Ep = hkp/2m = h*N?/32mlL? = kT
(here, Tr is called “Fermi-Temperature”, but it is not the actual
temperature of the system!)

In three dimension, take a cube L3 and you get k; = n; - 2m/L.
Each k-value occupies (27 /L)3, the density is therefore D =
(L/2m)3. The k-space now is a sphere with radius k.

Amr 1 N
N=2 -<?k,%>.D . =zi/2n2N=i/2n2n, n=og

Spin -
occupied
Volume

(attention: n is now the particle density!)
. n?

Fermi Energy: Er = ﬁ(3n2n)2/3

According to Fermi-Dirac-Statistics

ne(BE — ) =1/(1+ ePEW), g =1/kT
is the probability of a state with energy E to be occupied. For
T = 0, the chemical potential is u = Ep.

1.4 Density of States in Energy
The total energy of the system is given by

%4
Fiot = ZW | i EGome (80 - 5)

V (o]
(2 )34nf k* dk E(K)ng(B(E (k) — E))
0

Here, the factor 2 again accounts for the spins. The substitution

=./2mE/h? dk/dE = \/m/2h?E yields:

m 3/2
Ee =V f dE ———Enz(B(E — Ep))

= f dEE g(E)nF(,b’(E — Ep))
0

Thereby g(E) is defined as
V2m3V 3N

9(E) = —73 VF:Zme/E
F
In 1D and 2D, g is
L\V2m 1 mlL?

9ip = ?\/_E 92p = ThZ
The average energy per particle is then (in 3D at T = 0 K):

1 (EF 3
® =5 arE o) =25

1.5 Fermi-Dirac-Distribution

For T = 0K, the probability for a stat with energy E goes like
p(E) = 6(Er — E).For T > 0 K, states with higher energies
might be occupied, as described by the Fermi-Dirac-Distribution:

FFD(E) = e(E_H)/kT +1

Here, u is the chemical potential with u(T = 0) = E. Note, that
Frp(u) = 1/2. The chemical potential is

ur =5 (1-2(5) )

Furthermore, note that for E — u > kT Fgp, becomes the

Maxwell-Boltzmann statistics e ~(E~#/kT
T=0 T>0
g(E)

h

_ number =
-
- of states

Frp(E)

Ep

The energy of the system is
o Er
AE =E(T)—E(0) = f dE Eg(E)Fgp(E) —f dE Eg(E)
0 0

One finds, that the heat capacity is

dE m?

= _ 2
=T 39(EF)kT




2 Chemical Bonds

2.1 lonic Bonds

Ionisation Energy IE:

Energy required to remove an electron from an atom to

create a positive ion
Electron Affinity EA:

Energy gained from adding an electron to a neutral atom to

create a negative ion
Cohesive Energy CE:

Energy gained from fusing two ions together (Coulomb).
Total energy change:

AEyipatip- = 1Eq — EAp, AE +,p-, 45 = —CE
= AEjipap = AEp g p+ip- + DE + p- 05 = IE4 —EAp — CE
If AE, 545 < 0, the bond might be formed.
Mulliken electronegativity = (EA + 1E)/2

2.2 Covalent Bonds

The wider the potential box, the lower is the ground state
energy. Therefore, to hydrogen atoms together form a bigger
box with lower electron states: they bond.

Since two helium atoms have four bonding electrons, due to the
Pauli principle not only the common ground state (which would
be lower) has to be occupied, but also the first excited state,
which has a higher energy than the original ground state of the
isolated atoms: they don’t bond.



3 Crystal Structure, Reciprocal
Lattice

3.1 Describing a Lattice

A lattice is an infinite array of discrete points described by the

lattice vector
3

ﬁ=2ui&i, uiENO
i=1
where d; are linear independent. A primitive unit cell is defined
by the volume @, (d@, X ds3). Each unit cell contains one lattice
point. A primitive unit cell can be constructed by the Wigner-
Seitz-Method.

3.2 Lattice Typesin 2D

@ is the angle between d, and d,.
Oblique lattice:

Rectangular lattice:

Centered rectangular lattice:
Hexagonal lattice:

Square lattice:

|d;|, |d,| arbitrary, ¢ # 90°
|d,| # |d,| arbitrary, ¢ = 90°
|d,| # |d,| arbitrary, ¢ # 90°
|d,| = |d,| arbitrary, ¢ = 120°
|d,| = |d,| arbitrary, ¢ = 90°

3.3 Lattice Typesin 3D
Simple Cubic Lattice (SC):

d; = aé,, d, =aé,
Body-Centred Cubic Lattice (BCC):

d; = aé,, d, =aéy, d;= > (x +é,+é,)
Face-Centred Cubic Lattice (FCC):

- a g =4 4 a o e a a e é,
a1=5(ex+ey)' a1=5(ey+ez)’ a3=z(€x+ez)

= -
d; = ae,

3.4 Notation of Directions
The direction of R can be noted down using square brackets
[abc] like:

R=3d,—2d,+d; - [321]
R=—6d, +12d, —3d; - [241]

minus — bar
common divisors ign.

3.5 Lattice Planes and Miller Indices

Notation of lattice plane:
If x,y, z are the intercepts of the plane with the d, -, d,-, d;-axes,
then find the smallest integers h, k, [ such that
———=h:k:l
Xy z
Then, (hkl) are the Miller indices of the plane. Again, use a bar
for negative indices.
The vector
g =h(d, x ds) + k(ds x d,) +1(d; X dy)
is normal to the plane.

3.6 Basis

Crystal can be described by a lattice plus a basis, which itself is
described by basis vectors

7y = x;dy + y;d, + 243, X;,¥;,2; € [0,1)

3.7 Reciprocal Lattice
Construction: The primitive lattice vectors of the reciprocal

lattice Bi can be derived using the primitive lattice vectors of the
direct lattice d;:

> 2m - 2m L > T o,
b, = E(az X d3), by = E(% X dy), by = E(al X dy)

3
5 = Z nigi
i=1
Here, Omega is the volume of the primitive lattice cell:
Q= dy(dy X d3)
Properties:
1 (_ilB] = 27'[51']'
2 la,(a, x ds)| = (277)3/|b1(b2 X b3)|
3 The reciprocal lattice of the reciprocal lattice is the direct
lattice.
4 el =1
G (hkl) = hb, + kb, + b, is normal to the lattice plain (hkl).
6 The separation between two lattice plains is
d(hkl) = 21/|G (hkl)|.

vl

3.8 The Brillouin Zones

The first Brillouin Zone is the Wigner-Seitz-Cell, centered at the
origin of the reciprocal space and contains all the points which
are closer to the origin than to any reciprocal lattice point.

The construction can be done using so-called Bragg-Planes.

3.9 Fourier-Analysis of a Periodic Function
Since the lattice is periodic, so are quantities such as electron
concentration, potential energy usw. Consider a general function
with periodicity

f@ =f(F+R),

R being the lattice vector. Apply Fourier-Transformation:
F(7+R) = zf(;)eiﬁ(ﬂﬁ) _ Zf(z)eﬁéfeiﬁﬁ L@
K K

o] — -
= =1 o k=G
For Fourier-Tranformation, only the k-values are important

which equal G:

@ =) £(6)e
G




4 Elastic Scattering of Waves

4.1 Scattering Particles

Photons: Scattered by atomic electrons, gives crystal
structure

Neutrons: Scattered by all particles with spin (electrons,
nuclei), gives crystal structure as well as
magnetic structure

Electrons: Charged, can’t penetrated deep into the solid,

useful for surfaces

4.5 Ewald Sphere

In reciprocal space, draw the vector k (direction of incoming
beam), such that it ends in a reciprocal lattice point. Since k' =
k, the possible G = k' — k-vectors lay on a sphere with radius k.
But G can by its definition only lay between to reciprocal lattice

points. Therefore, only in the k'-direction, where a lattice point
lays on the sphere, constructive interference is possible.

Detector

4.2 Scattering at one Particle
Consider scattering at one particle.
Incoming wave:

A= Aoei(ﬁf—(ut)

Elastic scattering: w = w', k = k', k+k
Total wave:

oik!|R=]

IR -7

f: atomic factor (element, scattering angle ...)

last term: scattered, spherical wave

Approximation: |I_€ - ?| =~ R in the denominator. In the

exponent, however, this is to rough:
k'|R—7=k'(R—7)=k'R -

A = Aoei(zf—a)t)f

— —
k'? ~ kR — k't
— —

= A ="2eilkR-wt)fo-ifAk AR .= k' —k (scattering vec.)

R

4.3 Scattering at many Particles

Sum over all particles i equals sum over all lattice points R and
basis atoms 7;:

A = ﬂei(kR—wt) Z f.e—l‘FiAE — ﬂ
R o0t

i(kR—wt) - —i(R+7;)ak
R szfe ’
i R J

Ay . g R

0 — _ -
=_el(kR wt) § e iRAk § fje irjAk

R = ™

R J

=a(Ak)

=s(ak)
Intensity:

2
1= e = Vol

Consider a(A%):
ForAk #G = a =0 (the phase factors cancel each other out)
ButforAk =G = a = Y% 1, which is huge.

Hence, one gets a very intense scattered wave for Ak = 5, which
is called Laue condition (Max von Laue).

la(ak)["[s(ak)[

4.4 Connection to Bragg-Condition
For X-ray scattering at crystals, there is also the Bragg-Condition
2dsin6 = ni

It is equivalent to the Laue-Condition:

Mk=k'-k=G & k?=k*+G*+2kG o —2kG=G’
In the last step was used, that k and k' differ only in direction,
not in length (elastic scattering). K
Left-hand-side:

G= hBl + kgz + lB3 might not be
the shortest possible vector.
Therefore, it can be written as

G = nﬁs,n € N with 55 being the
shortest possible vector with integers h, k, [:

2n 2n I
—ZkG——anG = 2knG, smH—Z(A) (d>sin9=G2

dsin

21\ 2
=<n?) & 2dsinf8 =nAa

4.6 Brillouin-Zone and Laue Condition
As in seen in 4.4, the Laue condition could be rewrltten as

—2kG = G? i ,
The minus sign doesn’t matter here, ///
so shift G - —G and get o Y

1 1 \2 GJ2 é
2E5=62@§(—5)=(—G> |

2 2
Since a dot product yields db = ab,, where b, is the projection

length on d, the above equation is true, if k lays on the Brillouin
zone edge.

Brillouin Zone%

4.7 Example I: Simple Cubic (SC)

For simple cubic, itis d; = aé; and b; = 2rr/a &, and therefore
d= 2r a
Gk VRZ kP + 12
The Bragg condition gives
2a

Hence, for each tuple h, k, [, n, there is one angle 8 with a
maximum (but e.g. (hkl) = (110) and (101) give the same 6).

sin@ = nA

4.8 Example Il: Face Centred Cubic (FCC)
A FCC can be defined as a SC with a basis 771

HE

Remember 4’ ~ a(AE)S(AE), where maxima are only for Ak =G
and therefore A’ ~ a(&)S(@). What s 5(5) (for fj = f)?

> o 2 .2ma
S(G) — ije—Ler — f(l + e—lﬁ(h+k+0) +e + e)

— f(1]+ e—in(h+k) + e—in(h+l) + e—in(k+l))

_ (4f, hklareall even or odd

- { 0, otherwise
If hkl als all even or odd, the sums h + k etc. are all even and the
exponent becomes a multiple of 2. If only one or two of hkl is
even, two e-functions are —1 and one is 1 which gives 0 in total.
Therefore, the solution is the same as for simple cubic, but
even/odd-combinations of hkl are not allowed.

BCC: Easily can be shown that for BCC h + k + [ must be even.

4.9 Example lll: Sodium-Chloride (NaCl)

Use simple cubic lattice with eight atom basis:

at:{ol;s(1)i5(0 )51 ) S0l 5|0)5
0 2 0 2 1 2 1 2 0 2 0 2 1 2 1

Now, 5(5) becomes:
5(@) = frat (1 + gm0 | o=in(htD) | pin(ictD)
+ fCl_e—in(h+k+l)(1 4 einletl) 4 pin(h+D) 4 eiﬂ:(h+k))
4(fna+ + fa-), hklare all even
= {4(fNa+ — for-),  hklare all odd
0 otherwise




5 Lattice Waves

5.1 Bloch’s Theorem

A lattice with lattice vector R has a discrete translational
symmetry. Hence, for the displacement uj at lattice point Ris
true:
uz = ei‘ﬁua
This becomes clear, if one looks at the harmonic wave solution:
ei‘ﬁua = iR g pi(d0-wt) — gpi(@R-wt) — ug

Obviously, it is enough, to consider the §’s of the first Brillouin
zone, since §' = § + G yields:

up = Ael(@'R-ot) — Aei(@OR-0t) _ g pi(dR-wt)
Remember, that k¢ = 1.

5.2  Monoatomic Chain

Let there be a 1D chain with N atoms at positions x,, = na,n € N

with mass m, connected by springs with spring constant k. Using

periodic boundary conditions, the last and the first atom are also

connected by spring. The force on the n-th particle is:
Fp = —k(Uy — Up_1) — kK(Up — Upy1) = —KQuUp — Uy

= mii,
with displacements u,,. To get the normal modes, one uses
u,~e "t where all atoms have the same time dependence:
—KQuUp — Upg — Upy1) = _mwzun (*)

As a matrix, this looks like this:
2 -1 -1\ /% U
el -1 2 -1 Uz Uz
— -1 2 Uz | = w?| U3
“\ N\
- 2 Un Un
One solution is like a wave travelling through the chain:
un(t) — Ae—i(qna—(ut)

Plugging in into (*) yields:
_K(Ze—tqna _ e—tqnaelqa _ e—lqnae—tqa) = —me2e~lana

ZK
= 1——(e‘q“+e iqa)
m

1 un+1)

s w=— (1 —cosqa) = ;Ksm (qa)

2
And hence, the * phonon dispersion relation” follows as:

w(q) = 2\/;|sin (q_

If the lattice constant is a, the reciprocal lattice constant is 2t /a
and hence, the first Brillouin zone is q¢ € [-7/a,n/a]. Atq =
—mn/a,n/a, w(q) has maxima and repeats itself afterwards
periodically: Therefore, higher Brillouin zones can be translated
back into the first one. displacement x,,

Since the lattice point are o e ,,,.;_-ffl;.-\,_ \
discrete, there are always LA T L W £ o A T L
many ways formany q’'s [/ 7T ey
to find waves fitting through ¢

all the point, but there is always one with the largest wavelength
and the smallest q, € [— rt/a /al.

Forq—)O(/l > a):w = K/maq

el e

Here, C is the elastic modulus, p the densitiy and hence, v the
speed of sound.

max w(q) = 2./k/m

The periodic boundary condition yields v,y =
Aeldna=iot — 4 Hence,qNa € 2nZ < q € 2nZ/Na.

= Aq=2n/Na = Numberofmodes: (2m/a)/Aq =N

T e

position x

Ae igin+N)a—iwt _

5.3 Diatomic Chain

A diatomic chain consists of two different atoms (upper and
lower case letters):
MUn = _K(Un - un—l) - K(Un - un)
Mun = _K(un - Un) - K(un - Un)
Note, that n does not number atoms but bases. Using the Ansatz
U, = Aelanap—iot Uy = Belanag-iowt

yields

—w?MA = —k(2A — Be™11% — B)

—w?mB = —k(2B — Ae'1® — 4)
which is in matrix form

2 —C e y
e e )=t ()
—Z (1 +elt) =

This matrix has the eigenvalues

o, o KM +m) <M+m)2 4 . qa
W@ == J—”Cj Mm Mm " 2
This is the phonon dispersion relation for
1D diatomic chain. The lower branch is i _
called the acustic mode, the upper one
the optical mode. Hence, the speed of
sound is dw/dq. Since for audible sound
q < m/a, those effects take place near
zero, where the speed of sound is
constant for variation of q.

m

—n/fa 0 w/a 9

Amplitude of the two atoms (using equation of motion):
B 2Kk —w?M
A k(1 + e-iaa)

For ga « 1 (hence, center of Brillouin zone):

k(M 4+ m) M +m\?2 4 ,qa\?
e [ty by
Mm Mm Mm\ 2

w*(q)
k(M +m) Mm
=—|1+ |1 —-———qg?%a?
Mm _\/ (M + m)? e
k(M + m) Mm
~———|1+(1—-———¢g? 2)
Mm ( _( 2(M+m)2qa
kq2a? LA
_K(M+m)<1+1$ Mm .2 2)z 2(M +m)
Mm 2(M + m)? 2k(M +m)
Mm
LA = longitudinal acoustic, LO = longitudinal optical
g g p
2w — KLy
B - 2m
LA: 1~ K((l ++1)m) ~ 1 same amplitude, phase
B 2 ZK(I\A//II; m) M
LA: 1~ kA + 1) == antiphase
Forq — tm/a:
, KkKM+m) M +m\? 4
R R
Mm Mm Mm
_K(M+m)+ M? 4+ 2Mm + m? — 4Mm
=T Mm F (Mm)?
2K
_K(M+m)+K(M—m)_ M LA
- - ) 2k
Mm Mm - LO
B 2K — 2K
LA: 1~ m =0 M oscillates, m at rest
B 2k —Z—KM
LA: 1~ K(l—ml) =00 M at rest, m oscillates




6 Thermal Properties due to
Phonons

6.1 Excited States of the Modes
For a system with a p-atom basis, N lattice points and motion in
d dimension, there are pd branches and Npd normal modes.
Let’s label the branches with an index s and the modes using the
wave vector ¢. Then, the normal modes are characterized by
w,(@). For one particular harmonic oscillator, the energy is:
€sqg = hws((_j)(nsﬁ + 1/2)
N5 is given by the Bose-Einstein-distribution with u = 0:
1
sq = Lphaos@ — 1
Therefore, the total energy can be given as (E, = E(T = 0)):

hawg ()
E= Z €5 = z hay (@) (nsg + 1/2) = Eg + Z T

6.2 Einstein Model
Einstein’s assumption: w,(§) = wg = const.

hwE hwg
—E= E0+Zﬁ ' — £, + Npd

efhoe — 1
C= oE = kN d(h‘%)z efhos
=
or ~ Pk ) (ePhes — 1)2

For kT > hwg:

C ~ kNpd (hwE) ! Rpd
f—1 =
PEkr?) Ghogz - P
Ford = 3,n = p = 1, thisis just 3R = 25]/Kmol. For kT < hwg

=C= kdi (ZTZ) e-ﬁfl(uE ~ e—ﬁh(uE — e-@)E/T

with the Einstein temperature 0z = hwg/k.

6.3 Debye Model
To calculate a sum ¥ 5 F5(q), it's convenient to turn it into an
integral [ d%q/Dy(q), which needs the density of g-states. In
section 1.3, these density is given by D,(q) = (L/2m)%:
One dimension:

n/a L T/a L Wmax 1 L L
f dqﬁ—fo quZ.L dw@5=>D1(w)=T_w

-n/a

Now, Debye’s approximation is w(q) =~ v,q (linear). Hence:
Dl(o)) — ﬁ — f do) Dl(a)) TvgN Vg

=— ="Vsq4q
Three dimensions
3

L a
[ ) = [anme () = [0 5 (32)
1 q 4mq° 2n) @ vd \2n
In the last step, using w(q) = v;q led to dq = dw/v,. Hence:
D()_4n(u2<L)3 Va)2
W)= vd \2m 2m2 v3
In 3D, there are three different acoustic branches with sound
velocities vy ;, i = 1,2,3. The densities of states of each branches
can naturally be added up to the total density of states:
Dy(w) = Vv (1 1. 1 N 1 , V3,
30T on Vi1 Vi, Vi ¢ _2”2173“)
For 51mp11c1ty, they are put together into an effective velocity v,.

N © wp =

3

3V. 9N
f dw D;(w) = =3N & ——
0 2m2vd wD
Hence, it’s possible to calculate the energy:
E=E _he@ E " 4w Dy(@) =2
- °+Zeﬁnws@ 1 °+f0 w D5 (@) 55—
s,
. N (D d hw
=E, o3 w w? Bho — 1
aE 9Nk [“p Bhw >
= —= — 2| Bhw
I T fo do © (eﬁflw—1) ¢
B 9Nk( T )3 fT xte
- e,/ ), P12
Here, ®p = Awp/k and x = fhw.
For T > G)D
2oy 3 b
(1 +x) T T
= 9Nk j ~ 9Nk (—) j dxx? = 3Nk
G)D 0
ForT « G)D
Op
— = C~T3
T — 00




7 Electron States in Crystals

7.1 Bloch’s Theorem
In the ideal Fermi-gas idea, electrons are treated as free particles
(V =0, Y ~e*).Inalattice: V(7) = V(¥ + ﬁ) and hence
[W@I? = [p(F + 1_2))|2 but in general %(#) # (7 + R).
=  YF+R)=e®®y@
What is the function @(ﬁ)?
ei®(§1+§2)¢(7—:)

W(F+R, +R,) = {eie(ﬁz)eie(ﬁl)w(f,)
Hence, O is linear in R and dimensionless, which yields @(ﬁ) =
kR. This yields Bloch’s Theorem in two equivalent versions:
(7 + R) = e®Fy(@); (@) = eFup (), wz(7F+ R) = up(®
Plug Y(#) = eiﬁr)uﬂ (7) into the Schrodinger equation and get:
——(V + Lk) up (M) + V(@up(7) = Ezuzp ()

Properties: En =E, zandE ; =E 3.z

7.2 Energy Bands
Schrodinger Equation (actually E; = E3; ):
hz - - - —
—%VZIP;(T) + V(Y (7) = Exyp(¥)
Since uy, and V are periodic, recall section 3.9:
4@ = ) G(6)eT,  V@E) = ) Veel®
G G
Hence, calculate first

h? h? (7+6)
U2 (P) = — — P2 () pi(k+G)7
5 Vi (7) 5 \% E C:(G)e
G

2R+ 6)
=) Gpl6) e e Z Co(G)EL, e'¥eic
G
(with 59 g = (ﬁ + 5)2/2m) and the SG is:
Z C"(G)( k+G Ei?)eiéf + Z V&’Cﬁ(é)ei(ma)? =0
GG’

Now, multlply both sides by emic"?, integrate and use

=1 211\ 2
fd3r e‘(G_G )T = 6* U

Cﬁ(éu)(E]_é+é” -

Eg)+ ) VarCy(G" =) =0
G"I

Now get a matrix for the 1D case, where G" = G, with G, =
n 2m/a. For example for G" = G, = 2@, is the equation above:

Ck(zcl)(EI?+2(;2 — Ep) + VoCi(2G,) + Ve, Ck(G1) + Va6, Ci(0)
+:-=0
Hence, the matrix is:
(ED — Ey + Vo) Vg, Ve, Vg C.(0)
Ve, (E;?+02 —E+ V) V_g, Ve, - C(Gy) |=0
Va6, Ve, (Ey2e, — Ex + Vo) Veg, C(261)
or equi\/alently: . . ‘
(ED +Vy) Vi, Ve, Vg - Ck:(O) Ck:(O)
Vo,  (ERsg, *+ Vo) Vg, Vg, || GGy | =Ee| €6y
Vzal VGl (EHZG +V) Vo 4 Ck(ZGl) Ck(ZGl)

Again, actually Ek = Eyn. For each n Ey deflnes an energy band
in k-space.

7.3  Empty Lattice Approximation

Assume, V (#) = 0, but keep lattice concepts (periodicity etc.).
Using the equation from 7.2

Co(G") (B g = B + ) Vi C(@" = 6) = 0
5’

with Vg = 0 yields

_n2(k+ G)
Ep = EE = —
+G m
Hence, for each E, which is restricted to the 1st Brillouin zone,

there a multiple possible energy values (for multiple 5'3).

7.4  Nearly Free Electron Model

Assume in 1D a weak V and use perturbation theory with the
free electron as the known Hamiltonian and the zeroth energy
order:

ﬁz 2 . 2
Hzﬁ-l'V(T), E+5:_m(k+6)

Here, the energy spectrum in continuous, the energy is defined
by |E| Take now a fixed but arbitrary k and define e = EE+G
with k' = k + G.

NON DEGENERATE CASE:

For this k/, the unperturbed eigenfunction is ¢ = |E') =

e”‘lf/\/v and hence, the first order correction is an unimportant
energy shift:

N N 1 - PR | _
=(k'|v|k’) = Vj d3r e KTy (e T = ;] ABrv@ =7V

The second order term for this k' is:

- -2
2 I(k’|V|k>I

€E>) =
k —
k'=k+G 6" E"'

G#0

(I_é’|V|I_E> Jd3r elk=K")Fy () = —] d3r e~y () = Vg

Hence, the total energy is

with V5 = V;r >

at k'. If those bands are far from each other, EE -

the correction negligible. But for some k, there a bands close to
each other. If e}g > e}g,, the correction is positive and the other

. Here, Eﬂ represents the energy of another band

E’ is big and

way around. Hence, the (formerly) small distance increases.
DEGENERATE CASE:

For some k-vectors, there is a degeneracy, meaning two
branches are overlapping (at the Brillouin zone boundary), in
1D e.g Ey/q = Eq/q—2n/q (the bands for G = 0 and G = —27/a).
Now, take a look at the matrix elements of a degenerate
subspace of |E) and |E + 5) = |E’) with Ek»o = Eg,_é:

<<E|V|§) (E|V|E')> <‘7 VE’_—E>=( -
(k' |vik) (i) \Vew V Vi ¥

The eigenvalues are:
V—el 2
L = (V—e~) [Ver _2|” =
VE!_% V - €3 3 k k
S 6=V 2 |VE’—ﬁ| ‘
Hence, the total energy is: \
EE = Eg +7V+ |VE’—E|

l

<
~T

=1
N——

Therefore, the gap between the bands is due to the perturbation
2|Vir_zl-




7.5 Tight Binding Model

Different approach: Look at the atomic states ¢ (7 — ﬁ) of an
atom at R first:

h: L = . .
(—%v +U(r—R)>¢(r—R) =E.¢(#—R)

Here, U is the atomic potential and E, the atomic energy. Since
qb(? - ﬁ) is a full basis, an electronic state i can be written as:

V@) = ) Ca(F—R)
R

where the coefficient should be C = 1/\/N eiﬁ, to obey Bloch’s
theorem. Hence, the so called Boch-sum is:

Y@ —\/—N;e kRp(# — R)
Schrédinger equation:
: - > > L
EY = (—EV + V(r))lp(r) = (—ﬁv +U+V - U)z,b

= Hyom¥ + (V- =E v+ (V- U)Y . oL
Now apply [ dV ¢* on both sides and later, define R” = R — R":

E=E,— f avy*(U = )y
1 2Bl - o/ >3 D
=E, _NZ eik(R-R') f dV(l)*(T —R )(U — V)¢(T - R)
RR'
=By ) e [ave W - 1o - R
R.R"

=E, — Z eikR f dve* (U - V)¢ (7 — R)
R
= E,— Z e*FA(R)

R
Here, Yz 1 = N was used, and the label was changed like R" >

R. A(ﬁ) is the hopping integral.

For a monoatomic simple cubic crystal with lattice constant a,
the nearest neighbour atoms are at

Ris=(£a,00), R,s=(0,+a,0) and Rs¢=(0,0,+a).
Define a = A(ﬁo) = A(a) and t = A(ﬁi), 1 <i < 6. Hence, the

energy up to nearest neighbour interaction is:
6 6

E~E, - Z e RiA(R) = E, —a — tz eikFi

i=0 i=1
3 3

=E,—a-— ZtZ cos(Eﬁi) =E,—a-— ZtZ cos(ak;).
i=1 i=1
(ki = ky, ) Here was used, that ﬁl = —ﬁ4 etc. Consider k — 0
and use cos(ak;) = 1 — (ak;)?/2:
E ~ E, —a — 6t + a’tk?
For thisk - 0 region, an effective mass m* can be defined by:
h2k? h?

2 2 *
=a“tk S mt=
2m* 2a2t

For an arbitrary k, the reciprocal effective mass tensor is defined
as:

(1) _1 Jd 0
m3/y;  h?dk; dk;

7.6 Insulators, Semiconductors, Metals

For N primitive cells, in the 15t Brillouion zone, there are N k-
points, each of which can hold two electrons (spin). Hence, each
energy band can host at most 2N electrons.

The number of electrons of a material is determined by the
number of atoms per primitive cell and by the valence electrons
per atom. If there are only full and empty bands (no “half-full”
bands), the material is either an isolator or a semiconductor,
depending on the gap width between the valence and
conduction band. Metalls have half-full bands.

Often band can overlap, so that there can exist several half-full
bands.

7.7 Quantum Oscillations
Quantum oscillations occur if there is a magnetic field. Then:
dg  dk
_— = h— =
_adt dt
Using ¥ = l/hVEE(k), it follows, that

—eVXB

- % L E; hence the E-component parallel to B is constant.

dk | - . .
B lv= %VEE, hence the following dot productis 0 =

dk dk; d d

—V3E = Zi—‘—E,, and hence £ = 0.

dt dt dki dt

Therefore, in E-space, the possible electron orbits are the
intersections of surfaces of constant energies with planes
perpendicular to B.

Integration over time of the first equation yields:

hfdtdk— fdtdfxﬁ = F-Ky=<Bx@(-7)
at -~ °) “ar 0= P T
That is to say, the projection of the orbit on a plane normal to B

has the same shape as the orbit in E-space.
Semi classical, there is a constriction for closed orbits:

jgdfﬁ=nh=n27th

Including a phase y and mind the Hamiltonian momentum
yields:

(n+y)2nh=j§d?ﬁ=j§d?(hz—eﬁ)

=ejgdf-ﬁxf’—ejgd?ﬁ=ef?ngxdF—edeVxﬁ

=2e§§—ejd5§=2e<b—ed>=ecb

Here, S is the surface enclosed by the orbit and @ is the flux.

Since B || 5‘, this yields:

o (n+ )Znh

B~ "V R

The area of the orbit in reciprocal space is given by

e -\

Srec = (E |B|) S

The difference of two consecutive orbits is

ASiec = Srec(M+ 1) — Spec(n) =

If the B-field is enhanced, the reciprocal orbits become bigger
and some of them might break through the fermi surface. For a
change A(1/B) in the B-field, the “distance” between two orbits
is
A(1>— 1 1 2me(n+1+y) 2me(n+y) 2me 1
B Bn+1 Bn hsrec hSrec hsrec F
This is the de Haas-van Alphen effect, F is the Haas-van Alphen
frequency.

S =

Onsager's Equation

2meB




8 Semi-Conductors

8.1 Concepts of Holes

In semi-conductors, the valence but is nearly full, except some
few “holes”, when electrons were excited to the conduction
band. It is convenient to focus on the holes.

The properties of the follow from the electron, which has been at
the spot, where the hole is now:

Eh = —Ee Eh(Eh) = —Ee(ﬁe) ﬁh = ﬁe m’;l = —m;

For T = 0, the conduction band is full of holes and the band
structure can approximately be described with

2k2 h2k2
E,(k) =E, +—— E.(k) =E. +—
W0 =Bt B =Bty
The Fermi energy is exactly the middle of the two bands, hence
E,+E.
Ep=w(T =0)= 2

8.2 The Chemical Potential
To discuss T > 0, the Fermi-Dirac distribution is needed; for
semi-conductors, E — p > kT is typical:

- ~ o (E-W)/kT
fFD(E) e(E-#)/kT + 1 €

The band structure for the electrons in the conduction band is
21,2

E =E
(00 = Bt

with the density of states
3/2

V /2m
9eB) =55 (35) (B —EY
Then, the concentration of electrons in the conduction band is
N 1% mikT\>/?
ne=y=v/ 4O i) =2 (Gz) T
The same can be calculate for the hole concentration in the
valence band p,:

—Y2
Py = (mhkT) e(Ev—#)/kT
v 2mh?
Obviously, the product n.p, is independent from g, it is constant,
and the constant is n?:
KT \? 0 %13/2 ,—(Ec—Ep) /KT 2
nepy =4 2mhZ (mgmy,)°>/2e™ e =n;
n; is the electron density for an intrinsic (not-doped) semi-

conductor, hence:
KT \3/2
me=2(m)  (memi)i/tem sy

For an intrinsic semi-conductor is n; = n, = p,,.
Evaluating n, = p,, gives a formula for the chemical potential:
E.+E, 4 3 my,
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